Overview Discourse on Inherent Distinction of Multiobjective Optimization in Routing Heuristics for Multi-Depot Vehicle Instances

Authors

  • Shir Li Wang Data Intelligent and Knowledge Management, Universiti Pendidikan Sultan Idris, Malaysia
  • Farid Morsidi Faculty of Computing and Meta-Technology, Universiti Pendidikan Sultan Idris, Malaysia
  • Haldi Budiman Fakultas Teknologi Informasi, Universitas Islam Kalimantan Muhammad Arsyad Al-Banjar, Indonesia
  • Theam Foo Ng Centre for Global Sustainability Studies, Universiti Sains Malaysia, Malaysia

DOI:

https://doi.org/10.61360/BoniGHSS252017390102

Keywords:

vehicle routing problem, multi-depot VRP, routing heuristics, scheduling routing, logistics problem

Abstract

This paper reviews the research methodologies used in earlier years on the benefits and traits reflected by multi-depot vehicle routing  problem  (MDVRP)  instances  and  assesses  the  efficacy  of various  improvised  techniques  to  improve  the  current  recurrent problems in routing procedures. Management of logistics involves moving finished goods from depots to end-user clients. Routing and scheduling systems that are improved will be able to serve a more significant number of customers in a shorter amount of time while also  increasing  customer  satisfaction.  To  thoroughly  discuss  the   current   state  of  MDVRP  implementation  in  routing  heuristics, an  analysis  of  the   selected  approaches  involving  multi-depot  task  distribution  under  VRP  incorporations  is  further  extrapolated. These approaches address the most common routing issues involving constraints like cost optimality, time window impositions, and load capacity  flexibility.  Recent  research  focuses  on  the  advantages,  proficiency,  problem  magnitude,  and  adaptability  in  MDVRP. The MDVRP framework can still be significantly improved by reducing routing costs with efficient heuristics to generate optimized solutions.

References

Corona-Gutiérrez, K., Nucamendi-Guillén, S., & Lalla-Ruiz, E. (2022). Vehicle routing with cumulative objectives: A state of the art and analysis. Computers & Industrial Engineering, 169, 108054. https://doi.org/10.1016/j.cie.2022.108054

Tao, Y., Lin, C., & Wei, L. (2022). Metaheuristics for a large-scale vehicle routing problem of same-day delivery in e-commerce logistics system. Journal of Advanced Transportation, 2022(1), 8253175. https://doi.org/10.1155/2022/8253175

Alweshah, M., Almiani, M., Almansour, N., Al Khalaileh, S., Aldabbas, H., Alomoush, W., & Alshareef, A. (2022). Vehicle routing problems based on Harris Hawks optimization. Journal of Big Data, 9(1), 42. https://doi.org/10.1186/ s40537-022-00593-4

Shi, Y., Lv, L., Hu, F., & Han, Q. (2020). A heuristic solution method for multi-depot vehicle routing-based waste collection problems. Applied Sciences, 10(7), 2403. https://doi.org/10. 3390/app10072403

Chen, C. M., Lv, S., Ning, J., & Wu, J. M. T. (2023). A genetic algorithm for the waitable time-varying multi-depot green vehicle routing problem. Symmetry, 15(1), 124. https://doi. org/10.3390/sym15010124

Li, H., Xiong, K., & Xie, X. (2021). Multiobjective contactless delivery on medical supplies under open-loop distribution. Mathematical Problems in Engineering, 2021(1), 9986490. https://doi.org/10.1155/2021/9986490

Žunic´, E., Đonko, D., & Buza, E. (2020). An adaptive data- driven approach to solve real-world vehicle routing problems in logistics. Complexity, 2020(1), 7386701. https://doi.org/ 10.1155/2020/7386701

Jayarathna, N. D., Lanel, G. H. J., & Juman, Z. A. M. S. (2021). An intelligent cost-optimized warehouse and redistribution root plan with truck allocation system; evidence from Sri Lanka. Journal of Business and Social Science Review, 2(11), 22–39.

Jayarathna, D. G. N. D., Lanel, G. H. J., & Juman, Z. A. M. S. (2022). Industrial vehicle routing problem: A case study. Journal of Shipping and Trade, 7(1), 6. https://doi.org/10. 1186/s41072-022-00108-7

Nura, A., & Abdullahi, S. (2022). A systematic review of multi- depot vehicle routing problems. Systematic Literature Review and Meta-Analysis Journal, 3(2), 51–60. https://doi.org/ 10.54480/slrm.v3i2.37

Fu, Q., Li, J., & Chen, H. (2022). Resource scheduling method for optimizing the distribution path of fresh agricultural products under low-carbon environmental constraints. Scientific Programming, 2022(1), 7692135. https://doi.org/10.1155/2022/7692135

Wang, D., Jiang, J., Ma, R., & Shen, G. (2022). Research on hybrid real-time picking routing optimization based on multiple picking stations. Mathematical Problems in Engineering, 2022(1), 5510749. https://doi.org/10.1155/2022/

5510749

Wang, Y., Ran, L., Guan, X., & Zou, Y. (2021). Multi-depot pickup and delivery problem with resource sharing. Journal of Advanced Transportation, 2021(1), 5182989. https://doi. org/10.1155/2021/5182989

Ochelska-Mierzejewska, J., Poniszewska-Marańda, A., & Marańda, W. (2021). Selected genetic algorithms for vehicle routing problem solving. Electronics, 10(24), 3147. https:// doi.org/10.3390/electronics10243147

Zhang, L., Liu, Z., Yu, L., Fang, K., Yao, B., & Yu, B. (2022). Routing optimization of shared autonomous electric vehicles under uncertain travel time and uncertain service time. Transportation Research Part E: Logistics and Transportation Review, 157, 102548. https://doi.org/10.1016/j.tre.2021.102548

Luo, S., Wang, Y., Tang, J., Guan, X., & Xu, M. (2021). Two-echelon multidepot logistics network design with resource sharing. Journal of Advanced Transportation, 2021(1), 6619539. https://doi.org/10.1155/2021/6619539

Gharib, Z., Bozorgi-Amiri, A., Tavakkoli-Moghaddam, R., & Najafi, E. (2018). A cluster-based emergency vehicle routing problem in disaster with reliability. Scientia Iranica, 25(4), 2312–2330. https://doi.org/10.24200/sci.2017.4450

Akararungruangkul, R., Chokanat, P., Pitakaso, R., Supakdee, K., & Sethanan, K. (2018). Solving vehicle routing problem for maintaining and repairing medical equipment using differential evolution algorithm: A case study in Ubon Ratchathani Public Health Office. International Journal of Applied Engineering Research, 13(10), 8035–8045.

Kocaoglu, Y., Cakmak, E., Kocaoglu, B., & Taskin Gumus, A. (2020). A novel approach for optimizing the supply chain: A Heuristic-Based Hybrid algorithm. Mathematical Problems in Engineering, 2020(1), 3943798. https://doi.org/10.1155/2020/

3943798

Dong, B., Christiansen, M., Fagerholt, K., & Chandra, S. (2020). Design of a sustainable maritime multi-modal distribution network – Case study from automotive logistics. Transportation Research Part E: Logistics andTransportation Review, 143, 102086. https://doi.org/10.1016/j. tre.2020.102086

Sun, H., Li, J., Wang, T., & Xue, Y. (2022). A novel scenario-based robust bi-objective optimization model for humanitarian logistics network under risk of disruptions. Transportation Research Part E: Logistics and Transportation Review, 157, 102578. https://doi. org/10.1016/j.tre.2021.102578

Zhang, Y., Liu, Y., Li, C., Liu, Y., & Zhou, J. (2022). The optimization of path planning for express delivery based on clone adaptive ant colony optimization. Journal of Advanced Transportation, 2022(1), 4825018. https://doi.org/10.1155/2022/4825018

Morsidi, F. (2022). Multi-depot dispatch deployment analysis on classifying preparedness phase for flood-prone coastal demography in Sarawak. Journal of ICT in Education, 9(2), 175–190. https://doi.org/10.37134/jictie.vol9.2.13.2022

Indriyono, B. V., & Widyatmoko. (2021). Optimization of Breadth-First Search algorithm for path solutions in Mazyin Games. International Journal of Artificial Intelligence & Robotics, 3(2), 58–66. https://doi.org/10.25139/ijair.v3i2.4256

Rachmawati, D., & Gustin, L. (2020). Analysis of Dijkstra’s algorithm and A* algorithm in shortest path problem. Journal of Physics: Conference Series, 1566(1), 012061. https://doi.org/10.1088/1742-6596/1566/1/012061

Jayarathna, D. G. N. D., Lanel, G. H. J., & Juman, Z. A. M. S. (2021). Survey on ten years of multi-depot vehicle routing problems: Mathematical models, solution methods and real- life applications. Sustainable Development Research, 3(1), 36–47. https://doi.org/10.30560/sdr.v3n1p36

Nura, A., Abdullahi, S., Jayarathna, N. D., Juman, Z. A. M. S.,

Jayarathna, D. G. N. D., Lanel, G. H. J., .. . , & Xie, X. (2022). Research on hybrid real-time picking routing optimization based on multiple picking stations. Journal of Advanced Transportation, 2022, 124.

Guo, Y., Zhang, S., Zhang, Z., & Meng, Q. (2018). Estimating added values of the integrated emergency response system for airport accident: Improved responsiveness and increased service capacity. Mathematical Problems in Engineering, 2018(1), 3960242. https://doi.org/10.1155/2018/3960242

De Giovanni, L., Gastaldon, N., Losego, M., & Sottovia, F. (2018). Algorithms for a vehicle routing tool supporting express freight delivery in small trucking companies. Transportation Research Procedia, 30, 197–206. https://doi. org/10.1016/j.trpro.2018.09.022

Stodola, P. (2018). Using metaheuristics on the multi-depot vehicle routing problem with modified optimization criterion. Algorithms, 11(5), 74. https://doi.org/10.3390/ a11050074

Zhan, S., Wang, P., Wong, S. C., & Lo, S. M. (2022). Energy-efficient high-speed train rescheduling during a major disruption. Transportation Research Part E: Logistics and Transportation Review, 157, 102492. https://doi.org/10. 1016/j.tre.2021.102492

Bruni, M. E., Beraldi, P., & Khodaparasti, S. (2018). A fast heuristic for routing in post-disaster humanitarian relief logistics. Transportation Research Procedia, 30, 304–313. https://doi.org/10.1016/j.trpro.2018.09.033

Ezugwu, A. E. (2020). Nature-inspired metaheuristic techniques for automatic clustering: A survey and performance study. SN Applied Sciences, 2, 273. https://doi. org/10.1007/s42452-020-2073-0

Wahyuningsih, S., & Satyananda, D. (2020). Improvement of solution using local search method by perturbation on VRPTW variants. Journal of Physics: Conference Series, 1581(1), 012004. https://doi.org/10.1088/1742-6596/1581/1/012004

Serafini, S., Nigro, M., Gatta, V., & Marcucci, E. (2018). Sustainable crowdshipping using public transport: A case study evaluation in Rome. Transportation Research Procedia, 30, 101–110. https://doi.org/10.1016/j.trpro.2018.09.012

Lombard, A., Tamayo-Giraldo, S., & Fontane, F. (2018). Vehicle routing problem with roaming delivery locations and stochastic travel times (VRPRDL-S). Transportation Research Procedia, 30, 167–177. https://doi.org/10.1016/j.trpro.2018.09.019

Downloads

Published

2025-01-24

How to Cite

Overview Discourse on Inherent Distinction of Multiobjective Optimization in Routing Heuristics for Multi-Depot Vehicle Instances. (2025). Journal of Global Humanities and Social Sciences, 6(1), 7-15. https://doi.org/10.61360/BoniGHSS252017390102

Similar Articles

11-18 of 18

You may also start an advanced similarity search for this article.