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Abstract: This paper proposes the stochastic volatility model with mixed data sampling and geopolitical risk
(SV-MIDAS-GPR) for modeling and forecasting the volatility of INE crude oil futures. The model is capable of
capturing both the influence of geopolitical risk on the volatility of INE crude oil futures and the high continuity
of volatility. We develop the maximum likelihood method based on continuous particle filters to estimate the
model parameters. Our findings demonstrate that the SV-MIDAS-GPR model surpasses a variety of benchmark
models excels in both within-sample accuracy and predictive power for volatility, including the GARCH model,
the stochastic volatility (SV) model, and the SV-MIDAS model, thus highlighting the value including the
addition of both the element volatility (MIDAS) framework and geopolitical risk into volatility modeling and

forecasting.
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1. Introduction

Crude oil, as a critical strategic resource and
energy commodity, significantly impacts financial
markets and the development of the real economy.
Crude oil futures play a pivotal role in the crude oil
market, representing the most actively traded
commodity derivatives, with price fluctuations
reflecting investors' expectations of market
uncertainty. Moreover, the fluctuations in oil futures
prices are vital for energy trading, portfolio
refinement, financial risk handling, options valuation,
and strategic speculation planning. In recent years,
the frequent occurrence of international geopolitical
risk(GPR) events has severely affected the crude oil
market. The occurrence of conflict events has led to
disruptions in crude oil supply, altering trade
volumes and subsequently impacting the price
volatility of crude oil futures. Therefore, accurately
measuring and modeling the volatility of crude oil
futures from a geopolitical risk perspective is of great
significance and has garnered widespread attention
from  both  the practical

communities(zhang et al., 2024; Liu et al., 2025; Li

academic  and
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etal., 2024).

Since the seminal work by Bollerslev (1986),
the generalized  autoregressive conditional
heteroskedasticity (GARCH) models have been
widely used to modeling and forecasting crude oil
market volatility. However, the return-based
GARCH models is treated as a deterministic function
of a set of historical information. In contrast,
stochastic volatility (SV) models assume that the
dynamics of volatility are described by a first-order
autoregressive process and are unobservable. The
inclusion of a news process in the volatility equation
of SV models renders them more flexible than
GARCH models,
within-sample adaptation and predictive accuracy for
future estimates (Yu, 2005).

However, the SV model is part of the

thereby providing superior

single-component  volatility —models  category,
potentially inadequate for capturing the elevated
continuity, or long memory, characteristic of
financial volatility. To address this issue, Shang

alongside Liu (2017) and Shang in collaboration with
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Zheng (2021) introduced the SV-MIDAS model.
This framework divides volatility into a random
(short-term) segment and a consistent (long-term)
segment. The latter, which is driven by a
low-frequency variable is modelled using the
MIDAS structure. Shang and Liu (2017) along with
Shang and Zheng (2021) demonstrate that the
SV-MIDAS

fluctuating long-term element and surpasses the

model effectively captures the
standard SV model regarding within-sample fit
accuracy. Recently, Wang et al. (2024) propose an
examination of the effects of economic policy
uncertainty on the volatility of China's stock market,
utilizing the SV-MIDAS model based on the
t-distribution framework.

Although the SV-MIDAS model adeptly
captures the persistent aspect of volatility, it fails to
account for the influence of macroeconomic
indicators, specifically geopolitical risk (GPR), on
volatility. Over the long term, the measurement of
geopolitical risk has been relatively challenging.
Despite the widespread recognition of its impact on
the macroeconomy and financial markets, there is a
scarcity of empirical studies on this subject. Only
after Caldara and Iacoviello (2022) developed the
Geopolitical Risk (GPR)
newspaper news that scholars were able to more

effects

index, grounded on

readily investigate the of geopolitical
risk.Considering geopolitical risk as an significant
source of uncertainty and its more direct connection
to oil supply, it is reasonable to infer that geopolitical
risk may exert a great influence on the volatility of
China's

incorporating geopolitical risk into the model may

crude oil futures market. Therefore,
further enhance the precision and reliability of
volatility forecasting in China's crude oil futures
market.

Motivated by the aforementioned insights, this
paper introduces the Stochastic Conditional Mixed
Data Sampling (SV-MIDAS-GPR) model, which
integrates perspectives from both the
GARCH-MIDAS and SV models. A principal
attribute of the suggested model is its capacity to
account for the extended memory of daily volatility
in INE crude oil futures, along with geopolitical risk

(GPR). The principal contributions of this study can
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be summarized in three key aspects. Firstly, we
develop the SV-MIDAS-GPR model to model the
volatility of INE crude oil futures. It is important to
note that the SV-MIDAS-GPR model is an extension
of the SV model, inheriting its original advantages,
particularly its ability to capture the random
information flow that is difficult to observe directly
More importantly, the
SV-MIDAS-GPR model draws inspiration from the
GARCH-MIDAS framework by Engle et al. (2013),
which divides the volatility of INE crude oil futures

in financial markets.

into a short-term element and a long-term element
through a multiplicative approach. The short-term
element refers to assumed to follow a latent process,
while the long-term component is modeled through
the MIDAS regression approach. Consequently, our
proposed SV-MIDAS-GPR model has the capacity to
capture both the random information and the high
persistence in the volatility of INE crude oil futures.
In addition, the SV-MIDAS-GPR model takes into
account the influence of macroeconomic variables
(GPR) on the volatility of INE crude oil futures.
Finally, we utilize the suggested SV-MIDAS-GPR
model to predict the volatility of INE crude oil
futures. The empirical results indicate that volatility
of INE crude oil futures exhibits strong time-varying,
clustering, and long-memory characteristics, and is
also influenced by geopolitical risk (GPR). We
compare the SV-MIDAS-GPR model with the
GARCH, SV, and SV-MIDAS models as a standard.
The findings indicate that the SV-MIDAS-GPR
model enhances the accuracy of out-of-sample
volatility predictions compared to the reference
models.

The subsequent sections of this paper are
structured accordingly. Section 2 offers an exhaustive
overview of the SV-MIDAS-GPR model, including
its theoretical foundation and the rationale for
integrating geopolitical risk factors with the MIDAS
framework. Section 3 presents the empirical analysis,
where we apply the model to the INE crude oil
futures market and compare its performance with
other established models. Finally, Section 4
summarizes the key findings and concludes the paper,
highlighting the implications for future research and

practical applications.
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2. The Model
2.1. The SV-MIDAS-GPR model

Shang and Liu (2017) propose the SV-MIDAS
model. The SV-MIDAS model assumes that T,

follows the following process

rj,t = exp(é:j,t /2)‘9/‘,1’ gj,t =7, + ﬂ’j,t (1)
ﬂj,t = ﬂﬂj—l,t +1;, (2)

7, =m+0 ¢ (1)ogRV, ) ()

k=1

where 7, is the log-return on day j during month t.
It is clear that in the SV-MIDAS model, the
logarithm of volatility &,, is separated into two
segments: a daily transient stochastic segment
A, , and a monthly enduring stable segment 7, The
daily transient stochastic segment A, follows a
Gaussian AR(1) procedure. To ensure the stationarity
of A, , process, we impose the restriction [B| < 1. It
should be emphasized that the long-term stable
defined by
low-frequency variable, which is the logarithm of

segment 7, is

, smoothing the

monthly realized volatility (RV), in accordance with
the approach of MIDAS regression. The monthly RV

is defined as

RV,=3 1), (4)

where NV, the count of trading days during month t.

@, is the Beta weighting formula, which is expressed

as
k
(=)
()= g—H— (5)
X -5

£;,,~iid N(0,1) n, ~iidN(0,0%)(6)

Jst

where K is the maximum MIDAS lag order and 0 <
@, (y) < 1. Within this study, we opt for K = 36,
meaning that we employ three years' worth of
MIDAS lags for the monthly realized volatility to
stable element. The

refine the long-term

coefficient ¥ governs the decay rate of the weighting

function. To ensure that the weighting function is
monotonically decreasing, such that more recent
observations assign greater weight, we impose the

constraint ¥ >1. &, and 17, are independently

it
separate from each other, and &, , follows a standard
exponential distribution (with unit mean). Although
the conventional SV-MIDAS model is capable of
depicting the fluctuating long-term aspect of
volatility, it overlooks the driving effect of macroe-
conomic variables. In particular, a significant number
of scholars have recently demonstrated that GPR has
a notable impact on INE crude oil futures volatility.
In light of this, to investigate the explanatory and
predictive power of GPR on crude oil futures
volatility, this paper further introduces GPR into the
standard SV-MIDAS model to expand the long-term

component process (7) as follows:
K K

7, =m+6,Y ¢, (y)I0gRV, )+6,> ¢, (¥,)log(GPR, , )(7)
k=1 k=1

The aforementioned enhancement of the
traditional SV-MIDAS model further underscores the
influence of GPR on the long-term volatility
segment 7, . It should be observed that under certain
conditions 92 =0, the extended SV-MIDAS model
(SV-MIDAS-GPR model) reverts to the standard
SV-MIDAS model.
2.2. Estimation method

In the context of the SV-MIDAS-GPR model,
the presence of latent state variables poses a
significant challenge. Specifically, these latent
variables introduce a level of complexity that
prevents the likelihood function from being solved
directly. As a result, the conventional maximum
likelihood estimation method, which relies on the
explicit form of the likelihood function, becomes
inapplicable for estimating the model parameters. To
surmount this hurdle, we have devised an innovative
strategy. We introduce the continuous sampling
importance resampling (CSIR) method, which is
specifically designed to handle the intricacies
associated with latent state variables. Through the
use of the CSIR method, we successfully calculate
the likelihood function of the SV-MIDAS-GPR
model robustly and effectively. Once the likelihood
function is successfully computed, we subsequently

apply the maximum likelihood estimation to derive
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precise parameter estimates for the model. This
two-step process not only addresses the issue of
latent state variables but also ensures that the
parameter estimation is both reliable and wvalid,
thereby enhancing the overall performance and
applicability of the SV-MIDAS-GPR model.

3. Empirical Analysis
3.1. Data

In conducting our data-driven study, we
leverage information on daily closing prices for INE
crude oil futures and infrequent monthly GPR index
data. The sample period spans from March 26, 2018
to August 29, 2025. All data are obtained from the
Wind Database of China. The daily return of INE
future is
using 7, =log(P,)—log(P, ;) where P, denotes

the closing price on day t.

crude oil calculated

Table 1 presents the descriptive statistics for
regarding the daily returns of INE crude oil futures
and the monthly GPR. As shown in the table, the
return distribution exhibits negative skewness and
excess kurtosis, indicating a significant deviation
from the Gaussian distribution. The JB test statistic is
highly meaningful for the return series, which further
confirms the non-normality of the series. The
Ljung-Box statistic indicates pronounced serial
correlation within the return series, suggest- ing a
high persistence of wvolatility. The descriptive
statistics of the GPR show that the GPR index has a
high mean and large volatility, indicating frequent
geopolitical adjustments.

3.2. Estimation results

We employ the maximum likelihood method
based on CSIR with M=500 particles for determining
the parameters of the SV-MIDAS-GPR model. To
implement the SV-MIDAS-GPR model, we set the
lag order K=36. Conrad and Loch (2015) show that a

sufficiently large K allows the lagged variables to

automati- cally adjust their weights, thereby
enhancing the robustness of the estimation. Therefore,
this paper selects K=36, corresponding to 36 monthly
lags of the low-frequency variable (historical
information from the past 3 years), to estimate the
long-term  volatility. The parameter estimation
outcomes are detailed in Table 2. For comparison, we
also estimate the GARCH, SV, and SV-MIDAS
models. Table 2 shows that the GARCH and SV
models have [

high wvolatility persistence,

estimates close to one, indicating
which aligns with
SV-MIDAS and

models have

Ljung-Box  statis-tics.  The
SV-MIDAS-GPR
positive @ >1 estimates, suggesting a long-term
MIDAS component. Notably, these models have
lower [ estimates than the GARCH and SV models,
due to their ability to capture the fluctuating

significant

long-term  component.  The  positive  and
significant @ > 1 estimates imply that higher monthly
RV predicts a higher long-term compo- nent,
while ¥ > 1 estimates greater than one indicate that
the effect of monthly RV on the long-term element

decreases as the lag increases.

Table 1. Descriptive statistics of daily returns and INE crude oil futures
Mean Min. Max. Std. Skewness Kurtosis Jarque-Bera Q(10)
Return 0.0001 -0.2618 0.1011 0.0236 -1.0027 13.5998 8733.1754 14.8957
GPR 113.4549 58.4200 318.9500 40.6524 1.9028 9.2835 202.3665 112.7736
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Table 2. Parameter estimation results

GARCH SV .SV-MIDAS SV-MIDAS-GPR
B 0.9321 0.9308 0.8310 0.8397
(0.0137) (0.0064) (0.0151) (0.0117)
0.1009 0.0929 0.1726 0.1704
62 (o)
(0.0110) (0.0049) (0.0134) (0.0129)
0.0000 -7.8400 - -
c(w)
(0.0185) (0.0633) - -
- - -7.8400 -4.3172
m
- - 0.1017) (0.0561)
o1 - - 0.4541 0.6987
- - (0.0155) (0.0114)
| - - 103.2768 40.0981
v
- - (1.5781) (0.06181)
- - - 0.0390
02
. . - (0.0139)
- - - 124.4556
v2
- - - (2.2921)
Log-lik 4268.6310 4393.1360 4401.0155 4402.0637
Table 3: Results of out-of-sample volatility forecasting evaluation.
GARCH SV SV-MIDAS SV-MIDAS-GPR
MSE 6.6086¢e-05 7.3753e-04 7.2619e-04 7.1046¢-04
MAE 2.2484e-02 2.1312e-02 2.1031e-02 2.0823e-02
QLIKE -2.9605 -3.9884 -4.0150 -4.0246

Note: Entries in bold highlight the model with the smallest loss value (in each row).

In the SV-MIDAS-GPR model, the positive
0, stimate indicates that low- frequency monthly
GPR increases long-term volatility, reflecting
geopolitical risk’s impact on oil supply/demand
uncertainty and its propagation through financial
networks. The A, estimate is significantly lower
than A, , indicating that the influence of monthly
GPR on long-term volatility persists longer than that
of RV. The SV-MIDAS and SV-MIDAS-GPR models
also have higher log-likelihood values than the
GARCH and SV models, suggesting that the MIDAS
structure  improves  volatility modeling. The
SV-MIDAS-GPR model further enhances model fit,
as shown by its higher log-likelihood compared to
the SV-MIDAS model.

3.3. Out-of-sample results
In empirical applications, investors tend to
prioritize the out-of-sample predictive accuracy of

models over their in-sample fit, as the former is more
indicative of the model's performance in real-world,
future scenarios. In view of this, we split the entire
sample into two subsamples: a training period from
March 26, 2018 to December 29, 2023 (consisting of
the first 1400 observations) and an out-of-sample
evaluation period from January 2, 2024, to August 29,
2025 (consisting of the remaining 402 observations).
This period allows us to develop and refine our
model based on historical data. We conduct the
out-of-sample forecast procedure using the rolling
window approach in which the estimation period is
rolled forward daily.

In order to assess the precision of the
out-of-sample volatility forecasts generated by
various models, this study employs three widely
recognized loss functions that are commonly utilized
in the field of financial econometrics. These include
the Mean Absolute Error (MAE), which gauges the
average size of the errors in a set of forecasts,
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irrespective of their direction; the Mean Square Error
(MSE), which assesses the average of the squares of
the errors—that is, the average squared difference
between the estimated values and the actual value,
giving more weight to larger errors; and the
Quasi-Likelihood Information Criterion (QLIKE),
which is a measure of the goodness of fit that is
particularly useful for models that do not belong to
the exponential family of distributions. By
incorporating these three metrics, we aim to provide
a comprehensive evaluation of the forecasting
models' performance.The results further underscore
the significant improvement in the forecasting ability
of the original single-component SV model for
volatility with the incorporation of the MIDAS
structure  within both the SV-MIDAS and
SV-MIDAS-GPR models. This also highlights the
value of utilizing the MIDAS structure to capture the
long-term components of volatility for forecasting
INE crude oil futures volatility.. In particular, the
introduction of GPR into the SV-MIDAS model
further en- hances the precision of the model’s
volatility forecasts, indicating that GPR contains
valuable information that plays a crucial role in
predicting volatility. In summary, the
SV-MIDAS-GPR model, which integrates both
MIDAS and GPR, demonstrates the best volatility
forecasting capability.

4. Conclusion

This  paper introduces the
Volatility-Mixed Data Sampling with Geopolitical
Risk (SV-MIDAS-GPR) model, a novel approach
that integrates geopolitical risk factors with the
Mixed Data Sampling (MIDAS) structure to forecast
the volatility about INE crude oil futures. The model
coefficients are determined via the maximum
likelihood estimation technique, which is renowned
for its efficiency and accuracy in statistical modeling.
The empirical analysis conducted in the INE crude
oil futures market demonstrates the effectiveness of
incorporating both MIDAS and geopolitical risk
factors into volatility modeling and forecasting.
Compared to other models such as the GARCH, the
SV, and the standard SV-MIDAS models, the
SV-MIDAS-GPR  model  exhibits  excellent
performance regarding both in-sample fit and
out-of-sample forecasting precision. The consistent
outperformance of the SV-MIDAS-GPR model
suggests its potential for broader
applications. Future research could further explore its
applications in areas such as option pricing and risk
assessment, which may provide additional insights

Stochastic

financial
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into the practical implications of the model in
financial decision-making processes.

Conflict of Interest
The author declares that she has no conflicts of
interest to this work.

Acknowledgement

This research was funded by:
Research Project for Graduates of Anhui University
of Finance and Economics under Grant No.
ACY(C2023203

Innovative

References

Bollerslev, T., 1986. Generalized autoregressive
conditional heteroskedastic- ity. Journal of
econometrics 31(3), 307-327.

Caldara, D., lacoviello, M., 2022. Measuring
geopolitical risk. American economic review
112(4), 1194-1225.

Conrad, C., Loch, K., 2015. Anticipating long-term
stock market volatility. Journal of Applied
Econometrics 30(7), 1090-1114.

Liu, L., Li, L., Li, D., Tang, L., 2025. Analysis of
geopolitical risk impacts on crude oil volatility
with an explainable machine learning approach:
China versus the USA. Applied Economics,
1-18.

Li, X., Ye, C., Bhuiyan, M. A., Huang, S., 2024.
Volatility ~ forecasting with an extended
GARCH-MIDAS  approach.  Journal of
Forecasting 43(1), 24-39.

Shang, Y., Liu, L., 2017. An extension of stochastic
volatility model with mixed frequency
information. Economics Letters 155, 144-148.

Shang, Y., Zheng, T., 2021. Mixed-frequency SV
model for stock volatility and macroeconomics.
Economic Modelling 95, 462-472.

Wang, N., Yin, J., Li, Y., 2024. Economic policy
uncertainty and stock market volatility in
China:Evidence from SV-MIDAS-t model.
International Review of Financial Analysis 92,
Article 103090.

Yu Jun. On leverage in a stochastic volatility model.
Journal of Econo-metrics, 2005, 127(02):
165-178.

Zhang, J., Xiang, Y., Zou, Y. and Guo, S., 2024.
Volatility forecasting of Chinese energy market:
Which uncertainty have better performance?
International Review of Financial Analysis 91,
Article 102952.

How to Cite: Tu, R. (2025). Forecasting oil futures price volatility
with geopolitical risk: A SV-MIDAS model. Journal of Global
Humanities and Social Sciences, 6(6), 307-312

https://doi.org/ 10.61360/BoniGHSS252018960610




