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Abstract: As a generalization of pseudoorders, the weak pseudoorder in ordered (semi)hyperrings was defined by Qiang et al., and some
results were studied. In order to further study, we apply weak pseudoorders for an ordered superring R and show relations with pseudoorders
ofR. Moreover, we present some illustrative examples and regular equivalence relation σ on ordered superring R, such that R/σ is an ordered
superring. Furthermore, we show that ifη is a weak pseudoorder on an ordered superringR, F is the set ofall weak pseudoorders on R/η* and
E = {ζ | ζ is a weak pseudoorder on R such that η⊆ ζ},then card(E) = card(F).
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1. Introduction

Marty (1934) and Krasner (1983) introduced the hypergroups
and Krasner hyperrings as a generalization of groups and rings. For
the basic definitions, terminology and applications of hyperstructures,
the reader is referred to the fundamental books (Corsini, 1993;
Corsini & Leoreanu, 2003; Davvaz & Leoreanu-Fotea, 2007;
Davvaz & Vougiouklis, 2019; Vougiouklis, 1994). Vougiouklis
(1990) introduced the definition of semihyperrings and proved some
basic results. Algebraic geometry over hyperrings was investigated
by Jun (2018). Asokkumar (2013) extended derivations to prime
hyperrings. Hila et al. (2018) explored some characterizations of
Krasner (m,n)-hyperrings through their (k,n)-absorbing hyperideals.

Heidari and Davvaz (2011) investigated the notion of ordered
hyperstructures. For the first time, the idea ofpseudoorders in ordered
semigroups was presented by Kehayopulu and Tsingelis (1995a,
1995b). Then, this concept was moved to ordered semihypergroups
by Davvaz et al. (2015). Feng et al. (2018) studied pseudoorders in
ordered *-semihypergroups. Finally, it was extended to ordered (semi)
hyperrings by Omidi and Davvaz (2016, 2017). They investigated the
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notions of strongly regular relations of an ordered hyperstructure and
applied them to construct an ordered structures. The connection
between ordered semihypergroups was established by Gu and Tang
(2016); Tang et al. (2018). For the work done on ordered
semihyperrings, we point out to Omidi and Davvaz (2018).

Rao et al. (2022) characterized ordered Γ-semihypergroups based
on their weak Γ-hyperfilters. In addition, in Qiang et al. (2021),
w-pseudo-orders in ordered (semi)hyperrings are given. Rao, Zhao,
et al. (2021); Rao, Kosari, et al. (2021) introduced some new concepts
of ordered hyperstructures. Shi et al. (2021) introduced the notion of a
factorizable ordered hypergroupoid and discussed some related
properties. The fuzzy interior hyperideals (Tipachot & Pibaljommee,
2016); the (m,n)-hyperideals (Mahboob et al., 2020); the uni-soft
interior Γ-hyperideals (Khan et al., 2020) and the prime (m,n) bi-Γ-
hyperideals (Yaqoob & Aslam, 2014) have been introduced and
investigated. Khan et al. (2020) characterized ordered hyperstructures
in terms of their uni-soft hyperideals. Ameri and Hedayati (2007) gave
the definition and examples ofk-hyperideals in semihyperrings.

We are fully aware that an ordered structure such as an ordered
semigroup has a very close relation with the theory of decision
processes, artificial intelligence, information retrieval, etc. We
are eager to study the weak pseudoorders in an ordered
hyperstructures. We apply the concept of the weak pseudoorder
for an ordered superring. The concepts have been supported by
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illustrative examples on ordered hyperstructures. Also, we present
some results connected with the weak pseudoorder.

2. Preliminaries

LetR,Γ≠ . If

(1) every γ∈ Γ is a hyperoperation on R,
(2) for every α,β∈ Γ and a, b, c∈R, we have aα(bβc) = (aαb)βc,

thenR is a Γ-semihypergroup. If ≠ U, V⊆R, then

UΓV =
U
UγV = U {uγv | u ∈ U; v ∈ V and γ ∈ Γ}.

γ∈Γ

Definition 2.1. (R,+,⋅) is a superring (Ameri et al., 2019) if
∀t,q,m∈R,

(1) (R,+) is a canonical hypergroup;
(2) (R,⋅) is a semihypergroup s.t., t ⋅ 0 = 0 = 0 ⋅ t;
(3) t ⋅ (q+m) = t ⋅ q + t ⋅m and (q+m) ⋅ t = q ⋅ t +m ⋅ t;
(4) q ⋅ (−m) = (−q) ⋅m = − (q⋅m).

(R,+,⋅) is a hyperring (Krasner, 1983; Davvaz & Leoreanu-Fotea,
2007) if it satisfies (1), (3) and (2) and (R,⋅) is a semigroup s.t.,
m ⋅0=0=0 ⋅m,∀m∈R.

Definition 2.2. (R,+,⋅,≤) is an ordered superring (hyperring) if

(1) (R,+,⋅) is a superring (hyperring);
(2) (R,≤) is a poset;
(3) (∀t, q, m∈R) q ≤mimplies q + t ≼m + tand t + q ≼ t +m;
(4) (∀t, q, m∈R) q ≤mimplies q ⋅ t ≼m ⋅ tand t ⋅ q ≼ t ⋅m.

Here, a relation J≼ G is only possible if∀j∈ J, ∃g∈ G s.t., j ≤g,
where ≠J,G⊆R.

We set

(1) E F 今 yt ∈ E;3q ∈ F; tσq.
(2) E I ∈F;3eI ∈E;eIσf I .
(3) E

a
eσF
nd e

今
Iσf

y
I
t．∈E;3q ∈F;tσq and q σ t &∀fI ∈F,∃eI

∈E;fIσ eI

(4) EσF 今 E F and E F.
(5) EσF 今 ye ∈ E;yf ∈ F;eσf .

Definition 2.3. σ is a pseudoorder on R if∀t, q, w∈R

(1) ≤ ⊆σ;
(2) tσq and qσw⇒ tσw;
(3) qσw 今 (q + t)σ(w + t) and (t + q)σ(t + w);
(4) qσw 今 (q . t)σ(w . t) and (t . q)σ(t . w).

3. Weak Pseudoorder on Ordered Superrings

Weak pseudoorder on an ordered hyperstructure was
investigated by Tang et al. (2018), Rao, Kosari, et al. (2021) and
Qiang et al. (2021). Clearly, ≤ is a weak pseudoorder, and also
every pseudoorder relation is a weak pseudoorder.

Example 1. Let R = {0,t, q, m} and

Table 1
hyperoperation +

+ 0 t q w
0 0 t q w
t t {0, q} {t, w} q
q q {t, w} {0, q} t
w w q t 0

Table 2
operation ⋅

· 0 t q w
0 0 0 0 0

≤ := {(0, 0), (t, t), (q, q), (w, w), (0, q), (w, t)}.

It can be seen that

σ = {(0; 0); (0;q); (t; t); (t; m); (q; 0); (q;q); (m; t); (m; m)}

is a pseudoorder on ordered hyperring (R,+,⋅,≤). Clearly,
R/σ = {o1, o2}, where o1 = {0, q} and o2 = {t, m} and (R/σ, ⊕, ⊙,
≼R) are an ordered ring, where

Table 3
operation ⊕

⊕ k1 k2
k1
k2

Table 4
operation ⊙

① k1 k2
k1
k1

and

二R= {(o1; o1); (o2; o2 )}.

Definition 3.1. ≠M⊆R is a hyperideal of an ordered superring
(hyperring) (R,+,⋅,≤) if

(1) m,m I
∈M⇒m +m I

⊆Mand −m∈M;

k2
k1

k1
k2

k1
k2

k1
k2
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(2) q ∈R⇒ q .m,m . q≤M;
(3) m∈M, q∈R and q≤m⇒ q∈M.

In condition (1),ifM+ R ≤M, then Miscalled a 2-hyperideal ofR.

Question. Is there an ordered regular relation η on an ordered
superring (R,+,.,≤) for which R/η is an ordered superring?

Omidi and Davvaz (2018) only provided a partial answer to the
above problem in the context of ordered semihyperrings by using
proper 2-hyperideals. However, for an ordered hyperring
(superring) R, R does not necessarily exist a proper 2-hyperideal.
In the following, we illustrate this concept with an example (see
Example 2).

Example 2. Let R = {0,t, q, m} and

Table 5
hyperoperation +/

+ 0 t q w
0 0 t q w
t t {0, t} w {q, w}
q q w {0, q} {t, w}
w w {q, w} {t, w} R

Table 6
operation ./

· 0 t q w
0 0 0 0 0
t 0 {0, t} 0 {0, t}
q 0 0 {0, q} {0, q}
w 0 {0, t} {0, q} {0, w}

Then, (R,+/ ,./) is a superring (Ameri etal., 2019). By setting

l ≤:= {(0; 0); (t; t); (q;q); (m; m); (0; t); (q; m)};

(R,+/ ,./ ,≤) is an ordered superring. Let A = {M | M is a proper
2-hyperideal ofR}. We observe that A = .

Now, we apply the idea of weak pseudoorder for an ordered
superring in the following manner and give some examples.

Definition 3.2. σ is said to be a weak pseudoorder if ve,f, q∈R,

(1) ≤ ≤σ;
(2) eσfand fσq⇒ eσq;
(3) eσf 今 (e
(4) eσf 今 (e .

(
(
5
6
)
)
e
e
σf
σf

and f
and f

σ
σ

e 今
e 今

(
(
e
e

q
)

)
(f

(f
.
+
q )

q
a
an
d (

d
q

(．q
e)

)
f
(q

).
+f);

Clearly, ≤ is a weak pseudoorder. and every pseudoorder relation is a
weak pseudoorder.

Example 3. Let us continue with the ordered superring (R,+/ ,./ ,≤)
in Example 2. We set

lσ := {(0; 0); (t; t); (q;q); (m;m); (0; t); (t; 0); (q; m); (m;q)}.

Then, σ is a weak pseudoorder, but it is not a pseudoorder, since
(q+/ q)σ(m+/ q) does not hold. Indeed:

(q; m) ∈σ;q+/ q = {0;q} and m +/ q
= {t; m} but (0; m); (q; t) σ

Example 4. In Example 3,

σ = {(0; 0); (0; t); (t; 0); (t; t); (q;q); (q; w); (w;q); (w; w)}.

is a weak pseudoorder. Clearly, R/σ= {o1, o2},where o1 = {0, t} and
o2 = {q,m}. Also, (R/σ, 田/,Θ / , ≤R) is an ordered superring, where

Table 7
hyperoperation 田/

⊕ k1 k2
k1
k2

Table 8
hyperoperation Θ /

① k1 k2
k1
k1

and

二R= {(o1; o1); (o2; o2 )}.

Now, let e ≤f where e, f∈R. As σ is a weak pseudoorder,
we obtain (e,f)∈ ≤ ≤ σ. So, σ*(e)≤ σ*(f).

Example 5. Let R = {t, q, w, r, s, t} and Γ= {γ,β}. Define

Table 9
hyperoperation γ

γ t q w j k l
t
q
w
j
k
l

{t, q}
{t, q}
w

{j, k}
{j, k}
l

{t, q}
q
w

{j, k}
k
l

w { j, k}
w { j, k}
w l
l {t, q}
l {t, q}
l w

{j, k}
k
l

{t, q}
q
w

l
l
l
w
w
w

k1
{k1 , k2 }

k2
{k1 , k2 }

k1
k2

k1
k2
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Table 10
hyperoperation β

β t q w j k l
t
q
w
j
k
l

{t, j}
{t,q, j, k}

{w, l}
{t, j}

{t,q, j, k}
{w, l}

{t,q, j, k} {w, l}
{t,q, j, k} {w, l}

{w, l} {w, l}
{t,q, j, k} {w, l}
{t,q, j, k} {w, l}

{w, l} {w, l}

{t, j}
{ t,q, j, k}

{w, l}
{t, j}

{ t,q, j, k}
{w, l}

{t,q, j, k} {w, l}
{t,q, j, k} {w, l}

{w, l} {w, l}
{t,q, j, k} {w, l}
{t,q, j, k} {w, l}

{w, l} {w, l}

≤ := {(t, t), (t, q), (q, q), (w, w), (j, j), (j, k), (k, k), (l, l)}.

Put

llσ = {(t; t); (t;q); (t; w); (q; t); (q;q); (q; w); (w; t);
(w;q); (w; w); (j;j); (j; k); (j; l); (k;j); (k; k);
(k; l); (l;j); (l; k); (l; l)}.

Proof. For

ζI :=

ζ ∈ E, we set

{(η* (x); η* (y)) ∈ R/η* × R/η* | 3p ∈ η* (x); 3q
∈ η* (y) such that (p;q) ∈ ζ} .

Clearly, R/σ = {o1, o2},where o1 = {t, q, w} ando2 = {j, k, l},is an
ordered Γσ-semihypergroup, where

Table 11
hyperoperation γσ

γσ z1 z2
z1
z2

Table 12
hyperoperation βσ

βσ z1 z2
z1 {z1 , z2 } {z1 , z2 }
z2 {z1 , z2 } {z1 , z2 }

and

≤σ= {(o1; o1 ); (o2; o2 )}.

Proposition 3.3. Let η be a weak pseudoorder on an ordered
superring (R,+,⋅,≤). Define

η* = {(p;q) ∈R ×R | pηq and qηp}

an

≤: = {(η* (e); η* (f)) ∈ R/η* × R/η* | 3p ∈ η* (e); 3q
∈ η* (f) such that (p;q) ∈ η} .

If

E = {ζ | ζ is a weak pseudoorder on R and η ≤ ζ}

and

F = {ζI | ζI is a weak pseudoorder on R/η* ;

then card(E) = card(F).

Clearly,

(η*(e); η* (f)) ∈ ζI 今 (e;f) ∈ ζ.

Claim: ζI is a weak pseudoorder on R/η*.
Let (η*(e),η*(f))∈≼. Then (e,f)∈ η⊆ ζ. So, (η*(e),η*(f))∈ ζI

and hence ≼ ⊆ ζI .
Now, let (η*(e),η*(f))∈ ζI and (η*(f),σ*(g))∈ ζI . Then, (e,f)∈ζ

and ,g)∈ ζ. So, (e,g)∈ ζ. Thus, (η*(e),η*(g))∈ ζI .
As ζ is a weak pseudoorder on R, we obtain e +g +g. So,

ym ∈ e+g;3n ∈f +g such that mζn.

Hence, (η*(m),η*(n))∈ ζI . Thus,

η* (e)田 η* (g) =
U

η* (m)
m∈e+g

Similarly,

→
η* (e)① η* (g) ζI η* (f)① η* (g).

Let (η*(e),η*(f))∈ ζI and (η*(f),η*(e))∈ ζI . Then, (e,f)∈ ζ, ,e)∈ ζ.
A
is
s
a
ζi
w
s
e
a w
ak p

eak
seu

p
d
se
o

d
d
oo
er

e
n

e
/η

geζf +g. Therefore, ifζ ∈ E, then ζI

Define φ : E → F by ϕ(ζ) = ζI . Claim: ϕ is a bijection mapping. Step
1. ϕ is well-defined.

Let ζ1; ζ2 ∈ E, ζ1 = ζ2 and (η*(e),η*(f))∈ζ1 I . Then, (e,f)∈ ζ1 = ζ2
which implies that (η*(e),η*(f))∈ ζ2 I . Thus, ζ1 I

⊆ζ2 I . Similarly,
ζ2 I

⊆ζ1 I . Step 2. ϕ is one to one.
Let ϕ(ζ1) = ϕ(ζ2). Then, ζ1 I

= ζ2 I . Let (e,f)∈ ζ1 is an arbitrary
element. Then, (η*(e),η*(f))∈ ζ1

I and so (η*(e),η*(f))∈ ζ2
I . Thus,

(e,f)∈ ζ2. Thus, ζ1 ⊆ζ2. Similarly, ζ2 ⊆ζ1. Step 3. ϕ is onto.

Consider σ ∈ F and

ζ = {(x;y) ∈R ×R | (η* (x); η* (y)) ∈ σ}.

Claim: ζ ∈E.
If (t,q)∈ η, then (η*(t),η*(q))∈ ≼ ⊆ σ, and so (t,q)∈ ζ.

If (t,q)∈≤, then (t,q)∈ η⊆ ζ. Hence, ≤ ⊆ ζ. Let (t,q)∈ ζ and

U
η* (n) = η* (f)田 η* (g).

n∈f+g

z1
z2

z2
z1

→ζI
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(q,z)∈ ζ. Then, (η*(t),η*(q))∈ σ and (η*(q),η*(z))∈ σ. Thus,
(η*(t),η*(z))∈ σ. This means that (t,z)∈ ζ. Now, let (t,q)∈ ζ and
z∈R. Then, (η*(t),η*(q))∈ σ andη*(z)∈R/η*. Asσ ∈ F, we obtain

η* (t)田 η* (z) =
U

η*
U

η* (m) = η* (q)田 η* (z).
p∈t十z m∈q十z

So,

Yp ∈ t十z;3m ∈ q十z such that (σ* (p); σ* (m)) ∈ σ.

Hence, (p,m)∈ ζ and thus t 十 z q十 z. Similarly, z . z . q.
Therefore, ζ ∈ E. Now, clearly ϕ(ζ)= ζI = σ. □

4. Conclusions

In this paper, the concept ofweak pseudoorder is introduced for
ordered superrings as an extension of the notion ofpseudoorder. We
defined the notion of weak pseudoorders on the ordered superrings
and gave some illustrative examples. Different classes of ordered
hyperstructures are constructed by the properties of weak
pseudoorders. In the future, we will focus on the weak
pseudoorders in ordered hyperrings.
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