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Abstract: For the purpose of solving a large-scale system ofnonlinear equations, a hybrid conjugate gradient algorithm is introduced in this
paper, based on the convex combination ofβFkR and βP

k
RP parameters. It is made possible by incorporating the conjugacy condition together

with the proposed conjugate gradient search direction. Furthermore, a significant property ofthe method is that through a non-monotone type
line search it gives a descent search direction. Under appropriate conditions, the algorithm establishes its global convergence. Finally, results
from numerical tests on a set of benchmark test problems indicate that the method is more effective and robust compared to some existing
methods.
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1. Introduction

The generic form of a system of nonlinear equations is:

F(x) = 0; x ∈ Rn; (1)

where the mapping F : Rn →Rn is nonlinear continuously
differentiable function. Science and engineering are two disciplines
that the nonlinear system of equations plays a significant role. As a
result, scholars in this area are now interested and quite a number
of methods have been devised including Newton’s method and
quasi-Newton’s method to solve (1), see Halilu and Waziri (2017);
Waziri et al. (2010); Fukushima and Li (1999); Dauda et al. (2019),
for more details. However, the two methods are costly (not friendly)
for solving large-scale nonlinear systems, since the Jacobian matrix
needs to be stored and computed at every iteration, or its
approximation (Waziri & Sabiu, 2015). The conjugate gradient
(CG) method, which is most frequently used to solve large-scale
unconstrained optimization problems, is the well-known methods
for finding approximate solutions to large-scale nonlinear systems,

*Corresponding author: Aliyu Yusuf, Department of Science, Bayero
University Kano, Nigeria. Email: ayusuf.sce@buk.edu.ng

because it has strong global convergence properties, low memory
requirement and simple to implement (Dai & Yuan, 1999, Waziri,
Yusuf & Abubakar, 2020).

Mostly, the nonlinear CG method is implemented via the
following form:

minf (x); x ∈ Rn ; (2)

the function f : Rn → R is continuously differentiable. Using the
following iterative formula, it produces an iterative sequence {xk}
starting from a given initial point x1 ∈Rn.

xk+1 = xk + αkdk ; k = 1;2; 3; . . . (3)

where xk is the kth approximation to the solution of (2), using a suit-
able line search technique, the step-length αk > 0 is computed and
conjugate gradient search direction dk is calculated by

where a scalarβk is known as CG update parameter, Fk is the gradient
offk atxk, that is Fk = ▽f(xk). Moreover, the update parameterβkisthe
most important component ofany CGmethod. As such, different CG
methods have been proposed corresponding to different choices ofβk
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[see Hager and Zhang (2006); Dai and Yuan (1999); Polak and
Ribiere (1969); Liu and Storey (1991)]. Among the update parame-
ters we have is the Fletcher-Reeves (FR) introduced in 1964, see
Fletcher and Reeves (1964) for details, given by:

Ⅱ F(xk+1) Ⅱ2

Ⅱ F(xk) Ⅱ2 ;

Likewise, the Polak-Ribiere and Polyak (PRP) is another type
ofCG update parameter established in 1969 (Polak &Ribiere, 1969),
defined as:

βPkRP = . (6)

The performance ofhybrid CGmethods has been shown to be better
than classical CG methods when solving nonlinear equations. For
instance, the papers by Babaie-Kafaki et al. (2011), Andrei (2008,
2009, 2007), Djordjevic (2016) and, recently, Ioannis et al. (2018)
presented different types of hybrid CG methods via convex
combination approach. Furthermore, hybrid CG methods are
severally used for solving (2), but not much have been proposed
to solve equation (1).

This article is focused on a hybrid conjugate gradient algorithm
(HCGA) via conjugacy condition for large-scale nonlinear systems
of equations. The article is structured as follows: The derivation of
the method is presented in Section 2. The algorithm has been shown
to be globally converged in Section 3. Section 4 reports the numerical
experiment on some set of benchmark test problems. Finally, the
conclusion is given in Section 5.

Motivated by the idea of convex combination’s approach
presented by Ioannis et al. (2018), in our research, we propose a
HCGA to solve (1) via conjugacy condition based on the convex
combination’s technique
Notation: Throughout the research, we haveutilized ∥.∥ to represent
the Euclidean norm of vectors, yk =Fk + 1 − Fk, sk =xk + 1 − xk,
fk =f(xk), ∇f(xk) =F(xk) and Fk =F(xk). We however assume that
the function (1) is Lipschitz continuous, fin (2) is defined by:

f (x) = ⅡF(x)Ⅱ2. (7)

2. Derivation of the Method

The suggested algorithm is deduced in this part, and it produces
a sequence of iterates, x1, x2, x3, ... , by using the recurrence relation
(3), αk > 0 is obtained via a non-monotone type line search
(Fukushima & Li, 1999), and from (4), our proposed descent
search direction dk is given by:

1
GA

= —(
1+ Fk+1 +βHk CGAdk; 丫k ≥ 1;

(8)

where

βHk CGA = λkβFkR +(1 —λk)βPkRP ; λk ∈ [0; 1]. (9)

By considering (5) and (6), (9) can be expressed as:

Ⅱ Fk+1 Ⅱ2

Ⅱ Fk Ⅱ2

From (8) and (10), we have

+ λk dk +(1 —λk ) dk.

(11)

We use the conjugacy condition to get the hybrid parameter λk, and
the conjugacy condition for nonlinear conjugate gradient methods is
provided by:

yTkdk+1 = 0. (12)

Multiply (11) by ykT, using (12) after simplification, we have:

λ*k =
ⅡFk+1Ⅱ2 (ⅡF

k+1Ⅱ2(yTksk)+(FTk +1sk )(yTkFk+1) — (yTkFk+1
)) +(yTkFk+1)2 (FTk +1sk )

.

(13)

However, from (8), the condition of a descent search direction holds
as follows:

FTk +1

To compute αk, we apply the method presented in Fukushima and Li
(1999). Suppose that ω1 > 0,ω2 > 0 andr∈ (0,1). Let also {ηk}be a
given positive sequence such that

Σ

k0
ηk < η < ∞ .

Hence, αk is computed as follows:

fk+1 —fk ≤ —ω1 Ⅱ αkFk Ⅱ2 —ω2 Ⅱ αkdk Ⅱ2

+ ηkfk ;where;ω1 ;ω2 > 0.

Let ikbe the lowest positive integer i such that (16) hold for α = ri and
suppose that αk = rik.

Algorithm of HCGA Method
Step 1: Given x0 ∈Rn, α0 > 0, ε = 10−4, d0 = − F0, set k = 0.
Step 2: Compute Fk.
Step 3: If ∥Fk∥≤ ε, then stop, else go to Step4.
Step 4: Compute αk using (16).
Step 5: Set xk + 1 =xk + αkdk.
Step 6: Compute Fk + 1.
Step 7: Compute 1

GA using (8), (5), (6) and (13).
Furthermore, the values ofλk* obtained from (13) are restricted in the
interval [0,1]; ifλk* is greater than one (1), thenwe setλk*to be equal
to one (1); ifλk* is less than zero (0), then we set λk* to be zero (0),
and we have a proper convex combination of FR and PRP
parameters, if λk* is between 0 and 1.

Step 8: Set k = k + 1 and repeat from step 3.

ⅡFk+1 Ⅱ2((yTkFk+1)2(FTk +1sk)+ ⅡFkⅡ2(yTkFk+1) — (yTkFk+1)(yTk sk
))

FTk +1yk
Ⅱ Fk Ⅱ2

.βHk CGA = λk +(1 —λk )

βFkR =

(15)

(16)

(10)

(5)
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Table 1
The test problems with their references

are listed in the table below

S/N Problem and reference
1 Problem Number 1 in Jamilu etal. (2017)
2 Problem Number 12 in Jamilu etal. (2017)
3 Problem Number 15 in Jamilu etal. (2017)
4 Problem Number 7 in Halilu and Waziri (2017)
5 Problem Number 6 in Halilu and Waziri (2017)
6 Problem Number 10 in Halilu and Waziri (2017)
7 Problem Number 16 in Jamilu etal. (2017)
8 Problem Number 1 in Waziri and Sabiu (2015)
9 Problem Number 1in Dauda et al. (2016)
10 Problem Number 7 in Waziri and Sabiu (2015)
11 Problem Number 8 in Halilu and Waziri (2017)
12 Problem Number 4 in Waziri and Sabiu (2015)
13 Problem Number 9 in Halilu and Waziri (2017)
14 Problem Number 6 in Waziri and Sabiu (2015)
15 Problem Number 1 in Halilu and Waziri (2017)
16 Problem Number 8 in Dauda et al. (2016)
17 Problem Number 7 in Dauda et al. (2016)
18 Problem Number 5 in Dauda et al. (2016)
19 Problem Number 2 in Halilu and Waziri (2017)
20 Problem Number 2 in Dauda et al. (2016)

3. Convergence Results

The suggested algorithm has proved to be globally converged in
this section. Under the following assumptions, the convergence
result of the HCGA algorithm is shown.

Assumption 3.1. The set,

Ω = {x ∈Rn | ⅡF(x)Ⅱ ≤ ⅡF(x0)Ⅱ}; (17)

is bounded, meaning that there exists a non-negative constant B,
such that

ⅡxⅡ ≤B; 丫x ∈ Ω. (18)

Assumption 3.2.
(1) There exists x* ∈Rn, such that F(x*) = 0.
(2) F is a mapping of differentiable continuous functions.

Assumption 3.3. The continuousfunction F is Lipschitz. Meaning
that∀x,y∈Ω,

ⅡF(x) —F(y)Ⅱ ≤LⅡx —yⅡ; L > 0. (19)

Furthermore, it implies that, by Assumptions 3.1 and 3.3, there
is a non-negative constant M such that

ⅡF(x)Ⅱ ≤M; 丫x ∈ Ω. (20)

Lemma 1: If a sequence {xk} is generated by the algorithm HCGA,
then a direction dk for Fk atxk is a descent. That is,

FTk +1dk+1 < 0; 丫k ≥ 1. (21)

ProofFor k= 1, we have FT1 dH1 CGA Ⅱ= — ⅡF1 Ⅱ< 0. For k > 1,

FTk +1 1
GA =

— Ⅱ Fk+1 Ⅱ2 — Ⅱ Fk+1 Ⅱ2 βHk CGAFTk +1dk+ ⅡFk+1 Ⅱ2 βHk CGAFTk +1dk.
(22)

Therefore, from (22), we get

FTk +1

Which shows that

FTk +1

Lemma 2: IfAssumptions 3.1 and 3.3 are met, let the sequence {xk}
be generated by the algorithm HCGA. If m > 0 such that

ⅡFk Ⅱ2 ≥ m; (25)

then,

|βHk CGA | ≤ (M + 4LB) := μ. (26)

Proof From (10), we have

βHk CGA = λkβFkR +(1 —λk)βPkRP ; whereλk ∈ [0; 1];丫k. (27)

Using (5) and (6), (27) becomes

βHk CGA = λk + —λk . (28)

When the absolute value is taking from both side of (28), we have:

|βHk CGA| ≤ |λk | + + |λk | . (29)

Applying Cauchy Schwartz inequality to (29), we have

|βHk CGA| ≤ |λk | + + |λk | .

(30)

From Assumption 3.3 and (25), it follows that

|βHk CGA| ≤ |λk | + + |λk | . (31)

Rearranging (31), we have

|βHk CGA| ≤ (|λk|M+L Ⅱsk Ⅱ (1+ |λk |)). (32)

Thus,by the boundedness of λk and Assumption 3.1, we have

|βHk CGA | ≤ (M + 4LB) := μ. (33)

Lemma 3: If Assumptions (3.1) and (3.3) are satisfied, let the
sequence {dk} be produced by the algorithm HCGA. Then,
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Ⅱ dHCk十 1
GA Ⅱ≤M 十(2μ)k Ⅱ F1 Ⅱ;丫k. (34)

Proof From (8), we have

Ⅱ dHCk十 1
GA

Ⅱ=Ⅱ — (
1十

βHk CG

Ⅱ

AF

Fk 1

1
d

Ⅱ

CGA
)

Fk十1十βHk CGAdHCGAk Ⅱ .

(35)

Applying triangle inequality on (35) together with (20) and
(33), we get

Ⅱ dHCk十 1
GAⅡ ≤Ⅱ

(
1十

βHk CG
Ⅱ

AF
Fk 1

1d
Ⅱ

CGA
)

Fk十1Ⅱ 十|βHk CGA| Ⅱ dHCGAk Ⅱ

≤Ⅱ Fk十1 Ⅱ 十
|βHk CGA | Ⅱ

Ⅱ
Fk

F
十1

k十1

Ⅱ2

Ⅱ
dHCGAk Ⅱ .

十 |βHk CGA| Ⅱ dHCGAk Ⅱ=Ⅱ Fk十1 Ⅱ 十2|βHk CGA | Ⅱ dHCGAk Ⅱ
≤M十2μ Ⅱ dHCGAk Ⅱ

(36)

Now, fork= 1,Ⅱ dH1 CGAⅡ=ⅡF1Ⅱ, which implies

Ⅱ dHCGA2 Ⅱ≤M十2μⅡ F1Ⅱ .

For k=2, we have Ⅱ dHCGA3 Ⅱ≤M十2μ Ⅱ dHCGA2 Ⅱ. This
implies

k
l ⅡαkF(xk)Ⅱ2 = 0. (39)

Proof From (7) and (16), for all k> 0, we have:

ω2 Ⅱαkdk Ⅱ2 ≤ ω1ⅡαkF(xk)Ⅱ2十ω2ⅡαkdkⅡ2 ;
≤ ⅡF(xk )Ⅱ2 — ⅡF(xk十1)Ⅱ2 十 ηkⅡF(xk)Ⅱ2. (40)

By summing the relation (40) and using (20), we have

ω2
Σ

i0
ⅡαidiⅡ2 ≤

Σ

i0
(ⅡF(xi)Ⅱ2 — ⅡF(xi十1)Ⅱ2) 十Σ

i0
ηiⅡF(xi)Ⅱ2;

= ⅡF(x0)Ⅱ2 — ⅡF(xk十1)Ⅱ2十
Σ

i0
ηiⅡF(xi)Ⅱ2;

≤ ⅡF(x0)Ⅱ2十ⅡF(x0)Ⅱ2
Σ

i0
ηi ;

≤M2 十M2
Σ

i0
ηi.

(41)

Since {ηk} satisfies (15), then by Assumption (3.3) the series
Σ

i 0
Ⅱαidi Ⅱ2 is convergent, which implies (38). By same arguments

as theabovebutwithω1ⅡαkF(xk)Ⅱ2on theleft-handside,we obtain (39).

Ⅱ dHCGA3 Ⅱ≤M十2μ(M十2μⅡF1 Ⅱ) =M(1 十 2μ)十 (2μ)2 Ⅱ F1 Ⅱ .

For k=3, we have Ⅱ dHCGA4 Ⅱ≤M十2μ Ⅱ dHCGA3 Ⅱ. This
implies

Ⅱ dHCGA4 Ⅱ≤M十2μ(M(1十2μ)十 (2μ)2 Ⅱ F1 Ⅱ)

= M(1十 2μ 十 4μ2)十 (2μ)3 Ⅱ F1 Ⅱ .

`Fork=4,wehaveⅡdHCGA5 Ⅱ≤M十2μ ⅡdHCGA4 Ⅱ.Thisimplies

Ⅱ dHCGA5 Ⅱ≤M十2μ(M(1十2μ十4μ2)十 (2μ)3 Ⅱ F1 Ⅱ)

= M(1十 2μ十 4μ2 十 8μ3)十 (2μ)4 Ⅱ F1 Ⅱ .

Therefore,

Ⅱ dHCk十 1
GA Ⅱ≤M(1 十 2μ 十(2μ)2 十(2μ)3 十 . . . 十(2μ)k—1)

十(2μ)k Ⅱ F1 Ⅱ .

Since μ > 0, we can chose μ ∈ (0; such that 2μ ∈ (0,1). This
makes the series 1+ 2μ + (2μ)2 + (2μ)3 + ... + (2μ)k− 1 a geometric
series. Hence,

Ⅱ dHCk十 1
GA Ⅱ≤M 十(2μ)k Ⅱ F1 Ⅱ . (37)

Lemma 4: If Assumption (3.3) is met and the sequence {xk} is
produced by the algorithm HCGA. Then, we have:

k
l Ⅱαkdk Ⅱ2 = 0; (38)

and

Theorem : IfAssumptions (3.1), (3.2) and (3.3) are met, let the
sequence {xk} be produced by the algorithm HCGA.

Then,

li f ⅡFkⅡ = 0. (42)

Proof Case 1. If

li f ⅡdkⅡ = 0. (43)

Then, by definition of the direction, we have

li f ⅡFkⅡ = 0. (44)

Case 2. If

li f ⅡdkⅡ > 0. (45)

Then, we have

li f ⅡFkⅡ > 0. (46)

By (39), we obtain

k
l αk = 0. (47)

Using (7) and (16), we get

ⅡFk十1 Ⅱ2 — ⅡFk Ⅱ2 ≤ ω1ⅡαkFk Ⅱ2 — ω2 Ⅱαkdk Ⅱ2 十 ηk ⅡFk Ⅱ2 . (48)

Suppose by contradiction that (48) does not hold, this means
that there exists a non-negative integer i − 1 such that
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Table 2
Numerical experiments of HCGA, NHCG and ICGB algorithms for problems 1–10

Problems Dim
HCGA NHCG ICGB

ⅡF(x)ⅡNI Time (s) ⅡF(x)Ⅱ NI Time (s) ⅡF(x)Ⅱ NI Time (s)

1 1000 2 0.106715 2.01E-05 3 0.100021 2.15E-09 3 0.110477 2.16E-09
10,000 2 0.603175 3.00E-07 4 0.619942 4.45E-10 3 0.630133 6.82E-09

2
100000 2 2.999795 3.31E-05 4 3.943696 3.17E-05 3 3.092768 2.16E-08
1000 5 0.163135 2.30E-05 1928 2.932383 9.99E-05 7 0.171407 2.40E-05
10,000 6 0.557942 7.60E-05 – – – 7 0.771150 7.60E-05

3
100000 9 3.274933 4.82E-05 475 141.7933 9.99E-05 9 3.483769 4.82E-05
1000 2 0.118804 1.48E-05 2 0.467551 1.48E-05 3 0.157118 4.48E-06
10,000 2 0.524767 2.23E-05 2 0.555511 2.23E-05 4 0.642536 1.65E-08

4
100000 2 2.706808 9.34E-05 3 2.967292 1.04E-08 4 2.833617 5.31E-09
1000 2 0.076110 6.51E-05 2 0.097069 7.10E-05 3 0.116186 2.84E-07
10,000 2 0.527870 1.80E-05 4 0.709516 9.66E-07 3 0.564919 3.30E-06

5
100000 2 2.761127 4.40E-05 5 3.822294 3.91E-06 3 2.865196 7.81E-05
1000 2 0.086872 2.24E-08 3 0.453638 2.24E-08 3 0.105180 2.24E-08
10,000 2 0.393192 7.10E-08 3 0.630836 7.17E-08 3 0.496078 7.10E-08

6
100000 2 2.423738 2.24E-07 5 3.198797 8.35E-14 3 2.797096 2.24E-07
1000 2 0.060065 3.75E-06 2 0.132127 4.51E-07 4 0.114342 4.51E-07
10,000 2 0.055383 1.67E-06 2 0.637730 1.43E-10 5 0.139075 1.43E-10

7
100000 3 2.363474 6.81E-06 3 3.120356 6.81E-06 6 2.733970 6.81E-06
1000 7 0.124505 2.84E-05 10 0.300784 7.59E-05 8 0.168446 2.84E-05
10,000 7 0.760381 8.97E-05 20 9.223515 5.06E-05 8 0.772320 8.97E-05

8
100000 8 2.366610 7.51E-05 15 56.07195 3.61E-05 9 2.964504 7.51E-05
1000 6 0.133922 3.61E-05 142 0.609758 9.53E-10 7 0.164786 5.79E-05
10,000 7 0.636311 2.28E-05 121 1.771815 1.11E-09 8 0.735432 3.66E-05

9
100000 7 3.013609 7.21E-05 101 11.14406 6.90E-07 9 3.638422 2.32E-05
1000 10 0.181855 6.77E-05 17 0.216867 1.00E-04 11 0.569179 6.77E-05
10,000 11 0.774165 8.07E-05 15 1.526369 8.52E-05 12 0.808575 8.07E-05

10
100000 12 3.447299 9.61E-05 14 10.02003 7.29E-05 13 3.774406 9.61E-05
1000 3 0.031149 6.92E-06 7 0.178253 1.54E-05 3 0.067513 6.39E-08
10,000 3 0.422564 3.32E-05 – – – 3 0.596332 6.55E-07
100000 5 3.136436 8.76E-05 – – – 4 3.117042 8.03E-06

ⅡFk+1 Ⅱ2 — ⅡFk Ⅱ2 > ω1Ⅱri—1FkⅡ2 — ω2 Ⅱri—1dk Ⅱ2 + ηkⅡFk Ⅱ2 . (49)

Since {ⅡFkⅡ} and{Ⅱdk Ⅱ} are bounded, then, allowing i→ ∞,
we have

ⅡFk+1 Ⅱ2 — ⅡFk Ⅱ2 > ηk ⅡFk Ⅱ2 . (50)

By rearranging (50), we obtain

ⅡFk+1 Ⅱ2 >
(
1 + ηk

)
ⅡFk Ⅱ2 . (51)

By taking the summation on both side of (51), we get

Ⅱ +1Ⅱ2 > Ⅱ (52)

From (52), we deduce that

ⅡF1Ⅱ2 +ⅡF2Ⅱ2+ ...+ⅡFk+1Ⅱ2 > ⅡF0Ⅱ2+ⅡF1Ⅱ2

+...+ⅡFkⅡ2 + η
(

ⅡF0 Ⅱ2+ⅡF1Ⅱ2+ ...+ⅡFkⅡ2
) (53)

However, (53) can reduce to

Which implies that

ⅡFk+1 Ⅱ2 > ⅡF0 Ⅱ2 . (55)

So,

Ⅱ Fk+1 Ⅱ>Ⅱ F0Ⅱ; for some k. (56)

This contradicts Assumption 3.1. Thus, we finally conclude that

f ⅡFkⅡ = 0. (57)

4. Numerical Experiment

The performance of our algorithm is compared with a new
hybrid Dai-Yuan and Hestenes-Stiefel conjugate gradient (NHCG)
method (Jamilu et al., 2017) and that of improved conjugate
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Table 3
Numerical experiments of HCGA, NHCG and ICGB algorithms for problems 11–20

Problems Dim
HCGA NHCG ICGB

ⅡF(x)ⅡNI Time (s) ⅡF(x)Ⅱ NI Time (s) ⅡF(x)Ⅱ NI Time (s)

11 1000 27 0.121965 7.52E-05 16 0.637253 7.34E-05 28 0.263939 8.82E-05
10,000 30 0.987005 7.40E-05 13 1.489052 7.57E-05 31 0.996675 8.68E-05

12
100000 33 5.054224 7.28E-05 20 43.61631 8.17E-05 34 4.684142 8.54E-05
1000 32 0.302352 6.50E-05 16 1.109407 7.54E-08 24 0.239484 8.06E-05
10,000 44 1.164529 7.39E-05 10 4.130877 1.66E-05 42 0.998665 7.02E-05

13
100000 58 6.881111 8.39E-05 48 29.09834 7.63E-09 52 5.803645 6.15E-05
1000 9 0.038496 5.20E-05 13 0.473268 8.53E-05 10 0.138206 9.31E-05
10,000 9 0.601466 5.20E-05 13 0.652902 8.53E-05 10 0.695646 9.31E-05

14
100000 10 3.104969 5.20E-05 13 2.950284 8.53E-05 11 3.556096 9.31E-05
1000 91 0.543911 7.97E-05 56 0.512586 8.14E-06 91 0.655509 7.97E-05
10,000 94 1.870703 8.07E-05 57 2.273382 4.68E-05 96 1.882174 8.06E-05

15
100000 87 11.084340 8.29E-05 56 56.22549 4.98E-05 88 11.803190 9.30E-05
1000 18 0.816613 8.16E-05 – – – 20 1.010536 6.03E-05
10,000 17 52.85926 9.45E-05 – – – 19 58.208154 7.93E-05

16
100000 – – – – – – – – –
1000 4 0.132100 7.48E-05 6 7.967907 4.12E-09 5 0.261741 9.49E-07
10,000 5 0.667781 5.78E-10 11 1.029034 3.38E-06 5 0.670711 3.07E-06

17
100000 5 2.264731 1.83E-09 5 2.874141 9.72E-06
1000 31 0.231619 6.81E-05 26 0.547314 8.07E-05 32 0.265430 6.81E-05
10,000 33 0.569699 9.77E-05 23 6.107963 7.22E-05 34 0.963672 9.77E-05

18
100000 36 4.286214 9.44E-05 22 88.32929 8.36E-05 37 4.707265 9.44E-05
1000 24 0.236314 6.20E-05 – – – 26 0.592225 6.20E-05
10,000 26 0.807640 7.06E-05 – – – 28 0.980387 7.06E-05

19
100000 28 4.793412 8.04E-05 – – – 30 4.793710 8.04E-05
1000 20 1.255967 9.46E-05 109 5.323423 9.54E-05 26 0.592225 6.20E-05
10,000 23 74.09088 7.35E-05 109 371.8765 9.49E-05 28 85.561769 8.54E-05

20
100000 – – – – – – – – –
1000 10 0.097154 6.36E-05 68 1.950169 1.17E-04 11 0.201417 6.36E-05
10,000 11 0.735711 4.02E-05 101 4.387700 1.48E-10 12 0.722308 4.02E-05
100000 12 3.069437 2.54E-05 101 51.42762 1.46E-11 13 3.321553 2.54E-05

Figure 1
Performance profile of HCGA, NHCG and ICGB algorithms
with regard to the number of iterations for the problems 1–20
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gradient method for nonlinear system of equations (ICGB) (Waziri
et al., 2020) to solve (1).

We set the following parameters for the experiments in our
algorithm (HCGA):

r= 0.8, ηk = , ω1 =ω2 = 10−4 and δk = 0.9.
The parameters for new hybrid Dai-Yuan and Hestenes-Stiefel

conjugate gradient parameters (NHCG) (Jamilu etal., 2017) are as
follows:

r= 0.2, ω1 =ω2 = 10−4, ηk = ; and δ = 0.9.
Similarly, the parameters for ICGB established in (Waziriet al.,

follows: r = 0.2, ηk = , ω1 =ω2 = 10−4

All the algorithms were run on a computer with a 2.13 GHz
CPU and RAM of 2 GB after being executed in MATLAB
7.71 GB (R2014a).

If the total number of iterations reaches 5000 without getting the
solution or ⅡFkⅡ≤10−4, then the iteration would be terminated.
Twenty (20) test problems (See Table 1) were used to test the
algorithmswith various dimensions (nvalues) and different initial guess.

Tables 2 and 3 contain the experimental results for the three
methods with “NI” and “Time,” respectively, representing the
total number of iterations and CPU time in seconds, while
the norm of the function F is ⅡF(x)Ⅱ. We can easily see from the
tables that the three algorithms were used to solve (1), but the
efficiency, robustness and effectiveness of our algorithm over
NHCG and ICGB are clearly shown, because the proposed
algorithm requires less CPU time and number of iterations than
NHCG and ICGB respectively.

Figures 1 and 2 illustrate how well our method performs in
terms of CPU time and number of iterations using the
performance profiles of Dolan and Moré (Dolan & Moré, 2002).

2020) are as
and δk = 0.9.
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Figure 2
Performance profile of HCGA, NHCG and ICGB algorithms
with regard to the CPU time (in second) for the problems 1–20
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5. Conclusion

In this article, we presented a HCGA for systems of nonlinear
equations and compared its effectiveness against NHCG method
proposed in Jamilu et al. (2017) and that of ICGB implemented in
Waziri et al. (2020) for solving equations (1), by performing
some numerical experiments. A non-monotone type line search
(Fukushima & Li, 1999) is used to prove the convergence of our
suggested algorithm, and the numerical experiments demonstrate
that our algorithm is promising.
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