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Abstract: With the proliferation of location-aware technologies and mobile social platforms, human
behavioural trajectory data has experienced explosive growth. How to accurately model the movement patterns
of specific individuals has become a hot topic in current research. This paper proposes an innovative framework
integrating dynamic community detection with trajectory prediction. By analysing the dynamic association
patterns between individuals within social networks, it enhances the accuracy of behavioural trajectory
modelling. The methodology first employs dynamic network community detection algorithms to identify groups
exhibiting similar behavioural patterns. Subsequently, it combines bidirectional neural temporal processes with
graph neural networks to perform spatio-temporal modelling of individual trajectories. Experimental results
demonstrate the method's effectiveness across multiple public datasets, showing superior performance to
existing benchmark methods in both trajectory prediction accuracy and social plausibility. Specifically, within
the TrajNet++ benchmark, it achieves a 7.0% improvement in average accuracy over traditional trajectory
prediction models while effectively identifying key behavioural patterns during community evolution. This
research offers a novel technical approach for understanding specific individual behaviours within social
networks, particularly exploring new methodologies at the intersection of dynamic network analysis and
spatio-temporal data modelling.
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neural networks, time-series analysis

relationships among individuals within the network
(Somayeh et al., 2024). By detecting communities
undergoing dynamic evolution, groups exhibiting
similar behavioural characteristics can be identified,

1. Introduction

In the era of mobile internet, the rapid
development of location-aware social networks
(LSNs) has generated vast quantities of human

behavioural trajectory data (Shehla et al., 2021).
These trajectory data not only encompass individuals'
spatio-temporal movement information but also
implicitly reveal rich social interaction patterns and
behavioural preferences. In recent years, analysis and
prediction based on behavioural trajectories have
become significant research directions in fields such
as computer vision and data mining, playing a pivotal
role in numerous practical applications, including
intelligent transport systems, anomaly
detection, and infrastructure planning. As one of the
core characteristics of social networks, group
structure reflects the patterns of close

crowd
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thereby providing effective contextual constraints for
individual trajectory prediction. Recent studies have
explored leveraging community structures to enhance
trajectory forecasting, such as forming social groups
by clustering pedestrians engaged in coherent motion
to better predict collective behaviour (Morgan et al.,
2024; Zou et al., 2020).

Despite significant advances in existing research,
current trajectory modelling approaches still face two
core challenges, data sparsity and categorical
complexity. On the one hand, users typically share
only a subset of their visited locations on social
media, resulting in severe sparsity issues within
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trajectory data. On the other hand, real-world
scenarios involve vast numbers of individuals and
intricate  interpersonal  interactions, rendering
traditional ~ multi-class  classification  methods
ill-equipped to handle such complex categorisation
tasks.

To address these challenges, this paper explores
novel approaches combining dynamic community
detection techniques with behavioural trajectory
modelling. It proposes an integrated framework that
fuses dynamic community detection with trajectory
prediction, enhancing understanding of individual
behavioural patterns through analysis of community
evolution dynamics. trajectory
modelling method combining bidirectional neural
time-point processes with graph neural networks is
designed, simultaneously capturing spatio-temporal
behavioural features and social relationships. Chapter
1 provides the research background, challenges, and

Concurrently, a

core contributions of this work. Chapter 2 reviews
research, summarising
advances in trajectory prediction, community
detection, and their integration. Chapter 3 details the
behavioural trajectory modelling framework based

relevant systematically

on dynamic community detection, including problem
definition, overall design, and core components.
Chapter 4 presents experimental design and results
analysis, validating the method's effectiveness across
multiple datasets with in-depth discussion. Chapter 5
summarises the work and outlines future research
directions.

2. Related Research
2.1 Trajectory prediction model

Early studies on human trajectory prediction
were primarily based on handcrafted features and
physical models. For instance, the Social Force
model simulates interactions between pedestrians
through attraction and repulsion forces,
Reciprocal Velocity Obstacles (RVO) ensure safe,
collision-free movement between agents (Zhu et al.,
2025). these rule-based approaches
demonstrate limited effectiveness in complex social

while

However,

interaction scenarios. With the advancement of deep
learning, neural network-based trajectory prediction
methods have gradually become the mainstream
approach, as detailed in Table 1.

Table 1 Comparison of Primary Trajectory Prediction Models

Model Key Features

Advantages Limitations

Social-LSTM?*  Social Pooling Layer

Generative Adversarial
Networks

Graph Structure
Modelling

Recursive Social

Social-GANP
Graph-LSTM®

RSBG! . .
Behaviour Diagram

Capable of capturing
spatio-temporal dependencies

Generate multimodal trajectories

Capturing Structured Interactions

Social relationships transcending
distance

Considering only local
neighbours

Training instability

High computational
complexity
Requires crowd
annotation

Note. Superscripts indicate data sources:
aData from (Bhunia & Saha, 2025)
bData from (Toujani et al., 2025)

‘Data from (Yan et al., 2023)

“Data from (Zhang et al., 2024)

The Social-LSTM model proposed by Alahi et
al. incorporates a social pooling layer to capture
spatio-temporal dependencies between pedestrians
via an LSTM network (Bhunia & Saha, 2025).
Subsequently, further research endeavours sought to
refine interactive modelling approaches. For instance,
Graph-LSTM employs graph structures to model
structured interactions between pedestrians, while
Social-BiGAT utilises graph attention mechanisms to
dynamically assess the influence of different
pedestrians on the target individual (Toujani et al.,
2025; Yan et al., 2023). In recent years, generative
models have demonstrated formidable potential in

trajectory prediction. Gupta et al. employed
generative adversarial networks (GANs) to generate
socially plausible trajectories. The Recursive Social
Behaviour Graph (RSBG) proposed by Sun et al.
utilises graph convolutional networks to integrate
node and edge information, exploring complex social
relationships that transcend spatial distance (Zhang et
al., 2024).
2.2 Community detection techniques

Community detection constitutes a vital
technique within complex network analysis, aimed at
identifying tightly connected subsets of nodes within
a network. In static network analysis, algorithms
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such as modularity optimisation and label
propagation have been extensively applied.
Community detection for dynamic networks,

however, necessitates consideration of the temporal
evolution of network  structures.  Primary
methodologies can be categorised into two types,
evolutionary clustering and event-based analysis.
Evolutionary clustering methods (such as FacetNet)
ensure continuity in community structures across
adjacent time slices by introducing temporal
smoothness  constraints (Lin et al., 2008).
Event-based approaches, however, focus on pivotal
events in community evolution—such as births,
deaths, mergers, and splits, by defining community
similarity to track evolutionary trajectories. The
dynamic community detection method based on the
Memetic algorithm proposed by Nussairi et al.
effectively identifies community structures within
dynamic networks through a directional mutation
strategy and variable neighbourhood search (Nussairi
et al., 2025). For community detection in dynamic
social networks, Liu et al. proposed a two-stage
model that employs the static community detection
algorithm LMA at discrete time points and the
dynamic community detection algorithm DNCD
along the temporal dimension. This model calculates
modularity through structural similarity, thereby
enabling time-series-based structure
detection in dynamic networks (Dokmeci et al.,
2025).
2.3 Integration of dynamic
trajectory analysis

In recent years, begun
exploring methods that combine dynamic network
analysis techniques with trajectory prediction.
Bisagno et al. formed social groups by clustering
pedestrians with coherent movements, thereby
improving the accuracy of trajectory prediction in
crowded scenes (Cadamuro et al., 2023). The
dynamic social network structure
detection model proposed by Hedia et al. provides an
effective tool for analysing the evolution of group
behaviour. While these studies form a crucial
foundation for the present work, they have yet to
systematically integrate = community
patterns with individual trajectory modelling (Hedia
et al., 2021). The NTPP-GNN model proposed by
Awokoya et al. integrates neural temporal point
processes with graph neural networks, comprising
three modules: spatial, temporal, and social relations
(Awokoya et al., 2013). Within the spatial module,
bidirectional recurrent neural networks are employed
to characterise the sequential relationships between

community

networks and

researchers have

community

evolution
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locations (Geeitha et al., 2024). Within the temporal
module, bidirectional neural temporal processes
capture temporal continuity from both forward and
reverse directions (Shu et al., 2023; Kui et al., 2023).
Within the social relations module, graph neural
networks are employed to propagate and learn user
representations (Singh et al., 2024; Krivonosov et al.,
2024). This end-to-end learning framework ensures
seamless integration between the three modules,
providing an effective solution for user trajectory
identification.

Existing research has proposed a wealth of
methodologies and yielded promising experimental
outcomes. However, current studies remain deficient
in the deep integration of dynamic community
evolution with individual trajectory prediction. This
deficiency manifests in three specific aspects. Firstly,
insufficient consideration has been given to the direct
impact of community evolutionary events, such as
mergers and splits, upon individual behavioural
patterns. Secondly, there exists a lack of trajectory
pattern analysis encompassing the entire community
lifecycle. Thirdly, when modelling individual
behaviour, insufficient use is made of the social
constraint information provided by the community
context.

3. Method
3.1 Model architecture

The overall architecture of this paper comprises
an integrated framework encompassing three core
modules: dynamic community detection, behavioural
trajectory modelling, and
association analysis, as illustrated in Figure 1. The
input layer receives multi-source data, including
dynamic social networks, individual spatio-temporal
trajectories, and user attributes. This data is fed in

community-trajectory

parallel to the dynamic community detection module
and the behavioural trajectory modelling module.
The former identifies groups exhibiting similar
behavioural patterns and tracks their evolution, while
the latter employs bidirectional RNNs, neural time
processes, and graph neural networks to model
trajectories spatially, temporally, and through social
relationships respectively. The community trajectory
correlation analysis module bridges these two
components. By analysing the correlation between
events and individual
behavioural patterns, it extracts community context

community  evolution
constraints and feeds these back to the trajectory
modelling module to optimise predictions. Finally,
all information undergoes fusion and end-to-end
training within the trajectory prediction and
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optimisation layer, ultimately delivering precise
trajectory  predictions, community
evolution trajectory analyses, and visualised
behavioural patterns. Through explicit data flow and

behavioural

feedback mechanisms, the entire architecture
achieves a closed-loop processing workflow from

multi-source inputs to accurate predictions.

] Community Detection

[ Trajectory Modeling

[ Correlation Analysis
Optimization

[ output
N Data Flow
W Feedback

Overall Framework of Behavior Trajectory Modeling
Based on Community Detection

Input Data

[Attribute Data

Dynamic Community
Detection Module

Trajectory Modeling

Module Correlation Module

[ Community-Trajectory

Trajectory Prediction and Optimization

$—E==

Output: Predicted Trajectories and Analysis

Figure 1 Overall Architecture Diagram of the Precise Modelling Method for Specific Individual
Behaviour Trajectories Based on Community Detection

The dynamic community detection module is
responsible for identifying groups exhibiting similar
behavioural patterns within social network data.
Given the dynamic nature of social networks, we
employ an event-based analytical framework. This

defines key events in community
evolution—including birth, death, merger, and
division—and tracks evolutionary trajectories by
calculating  the  matching  degree

communities, as detailed in Table 2.

between

Table 2 Definitions of Societal Evolutionary Events

Evolutionar
y Definition Matching Criteria
Event
Society Birth New societies emerging 3C > (C,C7THY >80

The society has ceased to exist.
Multiple organizations merged
The society split into multiple
societies.

Society Demise
Society Merger

Sectarian Schism

3C S 2(CLCMY > 6

i

3C!IC, - 7(C!,CI" >0 & 7(C!,CM)

i

3C! > ¢(C/,C;")>0&(C/,CI") >0

The match calculation
considers the similarity of nodes and edges, as
defined in equation 1.

comprehensively

_ehore
e

[E(CHNEC)
“EehoEC

(1

#(Cl,C1

Here, C,.t denotes the society at time £, while
and denote the set of nodes and the set of edges of
the society respectively.

For community detection in dynamic social
networks, we have enhanced the detection method
based on the Memetic algorithm (Tan et al., 2024; Jin

& Hao, 2019). First, optimise the construction of
network snapshots by dividing the time series into
multiple time windows to build a sequence of
network snapshots G,, G, ,...., G, . Secondly, initial
community detection is performed. For each
snapshot GG, , the improved LMA algorithm is
employed to detect the initial community structure.
Thirdly, conduct community evolution tracking by
calculating  the matching degree  between
communities across consecutive time slices to
identify community evolution events and establish
community evolution chains.

The behavioural trajectory modelling module
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employs a  hybrid architecture = combining ‘a dj(ct) ~a dj(Ct)
bidirectional NTPP with GNN. The NTPG-GNN Sim(C!,C" )= ! J 3)
model comprises three submodules: spatial, temporal, Y ‘adj (CHuadj(C i)

and social relations. Specifically, the spatial module
utilises bidirectional recurrent neural networks to
characterise sequential patterns between locations.
The temporal module employs bidirectional neural
time point processes to capture temporal continuity,
and the social relations module leverages graph
neural networks to propagate and
representations (Sun et al., 2025).

The community trajectory association analysis
module between
community evolution and individual behavioural
trajectories. By analysing the correlation between
community evolution events (such as mergers and
splits) and changes in trajectory patterns, it provides
contextual constraints for trajectory prediction.
Specifically, we define a community influence factor
to quantify the extent to which community structure
impacts individual behaviour, as detailed in equation
2.

learn user

establishes association rules

Bl = ci
i NC |
Zj:l ‘Cj

Here, |Cf| denotes the size of the group, while
represents the connectivity between individual and
elements outside the group. This factor reflects the
extent to which an individual is influenced by the
behavioural norms of their group affiliation. A higher
indicates a greater likelihood that the
individual's behaviour will conform to the group's
typical patterns.

3.2 Dynamic community detection algorithm

We propose an enhanced dynamic community
detection method based on the Memetic algorithm,
which integrates a directional mutation strategy with
a variable neighbourhood search algorithm.

Regarding encoding strategy, for network
snapshot G, t , string encoding is
employed. Assuming this snapshot contains five
{v],v7,v;,v4,v§} , if the string-encoded
chromosome is {1,2,2,1,3} , this signifies that
{v1,v4} belongs to community 1, {vz,vz} belongs
to community 2, and {vi } belongs to community 3.
A directional mutation strategy was devised,
calculating the structural similarity Sim(Cf,C i)
between different
individual and setting the mutation probability
P =max(Sim(C!,C")) for each individual. The
structural similarity is defined by Formula 3.

1
X
d +1

2

value

at time

nodes

communities within each
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Here, adj (Cf) denotes the set of adjacent
nodes for community C,.t.

A fitness function was devised employing a
modularity function based on similarity, such that
node pairs within the same community exhibit higher
similarity than those belonging to different
communities, as detailed in Equation 4.

o _N| Sy (DS
Q(C)—;{(TS) (TS)} )

Here, indicates the similarity between nodes u
and V.

IS, = Z“Ec_, o(u,v),
DSi = ZueC;’.veV(G‘) O-(u’ V) >

DSi = ZueC:’.veV(G‘) O-(u’ V) > G(u’ V)

An improved variable neighbourhood search
algorithm was developed, incorporating three distinct
neighbourhood structures: exchange, multi-point
exchange, and composite exchange. Exchange
involves randomly selecting any two nodes from an
individual and  swapping  their
neighbourhoods. Multi-point exchange
multiple  exchange  operations  sequentially.
Composite exchange rearranges the sequence of
neighbourhoods to which nodes belong. These
neighbourhood structures are invoked in ascending

respective
executes

order of complexity to enhance algorithmic
performance.
3.3 Trajectory modelling and prediction
algorithms

In trajectory modelling, we propose an
enhanced NTPP-GNN architecture comprising three
core components: a spatial modelling component, a
temporal modelling component, and a social relations
component, as detailed in Figure 2.

The spatial modelling component employs a
bidirectional recurrent neural network (Bi-RNN) to
encode sequences of locations within trajectories, as
detailed in Equation 5.
h** = BiRNN (h*,

) =

1,AL)) (5)

Here, [, denotes the positional information at
time 7, while Al, represents the change in
position.
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Improved NTPP-GNN Architecture for Behavior Trajectory Modeling
Input: Raw Trajectory Data

)

v v

Bidirectional

Spatial Medeling

1

Bidirectional
RNN NTPP

B = BIRNNINE [0, AL A¢ =explaThime + §)

Temporal Modeling

v

Graph
Neural Network
hfeEd = GNN (P, hEme, {hy}y

Social Modeling

Multi-Head
Attention

!

Predicted Trajectory

With Community Context

Figure 2 Improved NTPP-GNN Architecture

The temporal modelling component captures
temporal continuity through a bidirectional neural
temporal process, accounting not only for the
influence of historical events but also incorporating
contextual information from future events, as
detailed in Equation 6.

2, =exp(a’ ™ + B) (6)

Here, lf denotes the intensity function of the
point-in-time process, while h,time represents the
temporal characteristics.

The social relationship component utilises graph
neural networks to aggregate information from
neighbouring nodes, thereby enhancing the
context-aware capabilities of individual trajectory
representations, as detailed in Equation 7.

hisocial — GNN(hisocial , hitime’ {h] | ] (= N(l)}) (7)

Here, N(7) denotes the set of neighbours for
individual 1.

Finally, through end-to-end joint training, the
trajectory prediction objective function (Equation 8)
is optimised.

T < )
lpi-pi

t=1

=

™-

+/1-R(®)+,LJ-Z,@"KL(1?§ 12

®)
Here, pf and p,i denote the predicted and

actual positions of individual i  at time ¢
respectively, while  R(©®) represents  the
regularisation term. The newly introduced

Kullback—Leibler divergence component measures
the divergence between an individual's trajectory and
the typical trajectory distribution of the community,
weighted by the community influence factor ﬂ,i .

The method proposed in this paper comprises
three  principal computational
complexity of each module is analysed below.

3.4 Algorithm complexity analysis

The dynamic community detection module
employs a Memetic algorithm with a time complexity,
where O(k-n-d_, ) denotes the iteration count,
n  represents the iteration count, and d,
signifies the maximum node degree. The community
evolution tracking phase exhibits a time complexity
of O(T-m”), where T indicates the number of
time slices and m denotes the number of
communities.

The trajectory modelling module employs L
bidirectional RNN with a time complexity, where
O(L-d?) denotes the trajectory length and d
represents the hidden layer dimension. The graph
neural network component exhibits a time
complexity of O(|E|-d*), where |E| signifies
the number of edges.

The association analysis module for community
trajectories  exhibits a time complexity of
O(|C|-|t]- log(|T])) , where |C| denotes the
number of communities and |7| represents the
number of trajectory segments.

Overall, the algorithm achieves integrated
analysis of dynamic community detection and
trajectory modelling within acceptable time
complexity, rendering it suitable for application in
medium to large-scale social networks.

modules. The

4 Experiments and Analysis of Results
4.1 Experimental setup

To validate the effectiveness of the proposed
method, all comparative experiments were conducted

17



Contemporary Education and Teaching Research Vol. 7

Iss. 1 2026

under a unified experimental environment. The
experimental hardware platform comprised an Intel
Xeon Gold 6248R CPU (3.0GHz base frequency, 24
cores and 48 threads), 128GB DDR4 memory, and an
NVIDIA RTX 4090 GPU (24GB VRAM). The
software environment utilised the Ubuntu 20.04 LTS
operating system, Python 3.9.18, and the PyTorch
2.0.1+cull8 deep learning framework. PyTorch
Geometric 2.4.0 was installed for graph neural
network implementation. Code execution occurred
within a CUDA 12.1 and cuDNN 8.9.5 environment
to ensure GPU-accelerated computation. Regarding
test datasets, we conducted experimental evaluations
on three publicly available datasets: Foursquare,
Gowalla, and TrajNet++.

The experiments

comprised two primary

components: community detection performance
assessment and trajectory prediction accuracy
evaluation. Comparison  methods included

mainstream trajectory prediction models such as

Social-LSTM, Social-GAN, and NTPP-GNN,
alongside  traditional =~ community  detection
approaches like FacetNet and Dynamic-LMA.

Regarding evaluation metrics, in addition to the
commonly used Average Displacement Error (ADE)
and Final Displacement Error (FDE) for trajectory
prediction, we introduced the Social Plausibility
Index (SPI) to measure the social acceptability of
predicted trajectories. For community detection,
Modularity (Q) and Normalised Mutual Information

(NMI) were employed to assess the quality of
community partitioning.
4.2 Analysis of trajectory prediction results

First, on three standard public datasets
(Foursquare, Gowalla, TrajNet++), the proposed
fusion model is compared side-by-side with three
mainstream  baseline  models  (Social-LSTM,
Social-GAN, NTPP-GNN) (Sun et al., 2025; Cuddy
& Glassman, 2010). The experiment employed a
standardised ‘training-validation-test’ dataset
partitioning with a fixed random seed to ensure
reproducible results, as detailed in Table 3. For
evaluation, we calculated the average
displacement error (ADE) between predicted and
ground-truth trajectories at all time points, alongside
the final displacement error (FDE) at the endpoint as
core accuracy metrics. Additionally, we introduced
the Socially Perceived Interest (SPI) index to
measure social plausibility. To delve
contribution of each module, we further designed
ablation experiments, sequentially removing the
dynamic community detection, bidirectional NTPP,
or social GNN components to quantify their
respective performance impacts. All experiments
were independently run five times, reporting mean
values and standard deviations of their metrics. This
systematically = and  reliably  validated the
comprehensive advantages of our method in both
prediction accuracy and social plausibility.

model

into the

Table 3 Comparison of Trajectory Prediction Performance (ADE/FDE)

Method Foursquare Gowalla TrajNet++
Social-LSTM? 0.78/1.25 0.82/1.31 0.75/1.22
Social-GANP 0.72/1.18 0.76/1.24 0.71/1.16
NTPP-GNN° 0.65/1.08 0.68/1.12 0.63/1.05
Ours 0.60/1.02 0.63/1.06 0.58/0.98

Note. Superscripts indicate data sources:
aData from (Bhunia & Saha, 2025)
bData from (Toujani et al., 2025)
Data from (Yan et al., 2023)

Quantitative experiments demonstrate that the analysis reveals intrinsic correlations between
proposed trajectory modelling approach community dynamics and individual behaviour
incorporating  community  detection  achieves patterns: community merging events typically reduce

significant performance improvements across three
benchmark datasets. Compared to the best baseline
method, its Average Displacement Error (ADE) and
Final Displacement Error (FDE) are reduced by 7.0%
and 6.5%, respectively, with this advantage being
particularly pronounced in long-term prediction
scenarios (>5 seconds). This confirms the critical
value of community contextual
capturing long-term behavioural patterns. Further

information in
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individual trajectory diversity, while community
splitting events tend to increase trajectory uncertainty.
This pattern validates the theoretical rationale for
constraining individual trajectory prediction using
community structure. Ablation experiments provide
compelling corroboration from a module contribution
perspective. The dynamic community detection,
bidirectional neural time-point process, and graph
neural network social modelling modules contributed



approximately 40%, 35%, and 25%, respectively to
performance enhancement. This fully demonstrates
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NTPP-GNN, our approach achieves stable
performance improvements, reducing ADE by

the effectiveness of each module's design and their
necessity within the overall framework. Experimental
results are illustrated in Figure 3.

The figure clearly illustrates the comparative
performance of different trajectory prediction models
in terms of average displacement error (ADE) across
three standard datasets. Overall, the proposed
fusion-based community detection method achieved
the lowest ADE values across all datasets
(Foursquare: 0.60m, Gowalla: 0.63m, TrajNett++:
0.58m), demonstrating optimal performance.
Compared to the next-best benchmark model

approximately 7.7%, 7.4%, and 7.9% across the three
datasets respectively. This aligns with the average
7.0% improvement reported in the main text.
Traditional models such as Social-LSTM exhibit the
highest error across all datasets, while generative
models like Social-GAN and graph-based models
such as Graph-LSTM perform at mid-range levels.
This bar chart provides intuitive validation of the
general effectiveness and significant advantages of
the modelling framework incorporating dynamic
community detection in enhancing the spatial
accuracy of trajectory prediction.

Performance Comparison of Different Models Across Datasets

Average Displacement Error (ADE) [m]
= = =
L+ w £

=1

Social-LSTM Social-GAN

082
078
076 076
073
072
071 W

o7 068
06

05

0.0

Graph-LSTM
Model

B Foursquare == Gowalla B TrajNet++

068
065
063 063
06
058

NTPP-GNN Our Method

Figure 3 Average Displacement Error (ADE) Performance Comparison

The figure clearly illustrates the comparative
performance of different trajectory prediction models
across three standard datasets in terms of Average
Displacement Error (ADE). Overall, the proposed
method integrating community detection achieved
the lowest ADE values across all datasets
(Foursquare: 0.60m, Gowalla: 0.63m, TrajNett++:
0.58m), demonstrating optimal performance.
Compared to the next-best benchmark model
NTPP-GNN, our approach achieves stable
performance improvements, reducing ADE by
approximately 7.7%, 7.4%, and 7.9% across the three
datasets, respectively. This aligns with the average
7.0% improvement reported in the main text.
Traditional models such as Social-LSTM exhibit the
highest error across all datasets, while generative
models like Social-GAN and graph-based models
like Graph-LSTM perform at mid-range levels. This
bar chart intuitively validates the general
effectiveness and significant advantages of the
modelling  framework incorporating  dynamic

community detection in enhancing the
accuracy of trajectory prediction.
4.3 Analysis of club inspection findings
On the same dynamic social network dataset, we
compare the improved Memetic algorithm proposed
herein with mainstream community detection
methods such as FacetNet and Dynamic-LMA. First,
we construct a sequence of network snapshots using
a uniform time window partitioning scheme.
Subsequently, each algorithm is run independently on
every snapshot to identify community structures,
with the quality of static partitions evaluated using
modularity (Q) and normalised mutual information
(NMI). Subsequently, we tracked community
evolution by calculating the matching degree
between communities across consecutive time slices,
and measured the algorithms' ability to detect key
events such as mergers and splits using the Evolution
Detection Accuracy (EDA). Finally, all experiments
were independently replicated five times, with mean
and standard deviation values reported for each
metric.  This  systematically  validated  the

spatial
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comprehensive performance advantages of our

method in both community structure discovery and

evolutionary tracking, with specific results presented
in Table 4.

Table 4 Comparison of Societal Testing Performance (Modularity Q/NMI)

Method Foursquare Gowalla TrajNet++
FacetNet* 0.45/0.52 0.48/0.55 0.42/0.49
Dynamic-LMA® 0.51/0.58 0.53/0.60 0.47/0.54
Ours 0.58/0.65 0.60/0.67 0.55/0.62

Note. Superscripts indicate data sources:
aData from (Lin et al., 2008)
bData from (Li et al., 2016)

The results demonstrate that the proposed
dynamic community detection method outperforms
the comparison methods on both modularity Q and
normalised mutual information NMI metrics. This
indicates our approach can more accurately identify
community structures within networks, providing
high-quality community context information for
subsequent trajectory modelling. Furthermore, the

evolution of the loss function during the model's
training over 100 iterations is illustrated in Figure 4.
Under fixed random seed (seed=42), the model
underwent end-to-end training using the AdamW
optimiser with a cosine annealing learning rate
scheduler. Loss was computed on the training set
with a batch size of 32, while performance was
monitored on an independent validation set.

Training and Validation Loss Curves (Our Method)
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Figure 4 Loss Evolution on the Training and Validation Sets during Training

The results demonstrate that both training loss
and validation loss decrease rapidly and converge
gradually as the training cycles increase. Validation
loss ceases to decrease significantly after the 85th
iteration, thereby triggering the early stopping
mechanism. This indicates that the model achieves
optimal generalisation around the 85th iteration
without overfitting. The smooth decline and close
alignment of both curves attest to the stability and
efficiency of the model training process, providing a
reliable foundation for achieving superior predictive
performance on the test set.

4.4 Application scenario research
To validate the applicability of the model

presented herein, we analysed 150 simulated
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trajectory samples to investigate the correlation
between the predicted endpoint error (FDE) and the
social rationality index (SPI). Data points were
grouped according to the size of the affiliated
community (small: <5 members, medium: 5-10
members, large: >10 members), as illustrated in
Figure 5. Experimental results reveal a significant
negative correlation between FDE and SPI (Pearson r
~ -0.42), indicating that lower prediction errors
generally correlate with higher social plausibility of
trajectories. Further analysis revealed that individuals
from  large (green  points)
predominantly clustered in the lower-left region of
the plot (low FDE, high SPI), whereas those from
small communities (red points) were more frequently

communities
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distributed in the upper-right region (high FDE, low
SPI). This result provides intuitive confirmation that
the scale of an individual's affiliated community is a
key factor influencing both the predictability of their
behaviour and its social appropriateness. Large

communities, owing to their stronger internal
behavioural norms and greater cohesion, yield
trajectories that are more readily and accurately
predicted while also conforming more closely to
societal expectations.

Relationship Between Prediction Error and Social Plausibility
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Figure S Relationship between Final Prediction Error (FDE) and Social Plausibility Index (SPI) for 100
Simulated Samples

Furthermore, to analyse the impact of
hyperparameters (learning rate and hidden layer
dimension) on model performance (measured by
average displacement error, ADE), we conducted a
heatmap analysis, as illustrated in Figure 6. During
the experiments, we performed an exhaustive search

across a parameter grid defined by the learning rate
set {0.0005, 0.001, 0.002, 0.005, 0.01} and the
hidden layer dimension set {64, 128, 256, 512, 1024}.
Each parameter combination was independently
trained and evaluated on the validation set.

Impact of Hyperparameters on Model Performance (ADE)
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Figure 6 ADE Values Simulated under Different Combinations of Learning Rates and Hidden Layer
Dimensions
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The results indicate that the optimal
performance region (marked by the blue dashed box
in the figure) is concentrated around a learning rate
of 0.001 and a hidden layer dimension of 256,
yielding the lowest ADE (0.713) under this
combination. The heatmap clearly reveals the
sensitivity patterns of performance to parameter
variations: an excessively low learning rate (0.0005)
leads to slow convergence and poor performance,
while excessively high learning rates (0.01) triggered
training instability. Concurrently, a distinct optimal
range (128-512) exists for hidden layer dimensions:
insufficient dimensions (64) resulted in inadequate
representational capacity, whereas excessively high
dimensions (1024) potentially caused performance
degradation due to overfitting. This experiment
provides  empirical  evidence for  model
hyperparameter selection and validates the rationality
of the current parameter configuration.

5. Conclusions and Outlook

This paper proposes an innovative framework
integrating dynamic community detection with
trajectory prediction, effectively addressing the
challenges of data sparsity and missing social context
encountered by traditional methods when modelling
specific individuals' behavioural trajectories. By
incorporating community evolution analysis from
dynamic networks into trajectory modelling, and
combining bidirectional neural time-point processes
with  graph networks, this approach
simultaneously captures both the spatio-temporal
characteristics of individual behaviour and the
constraints imposed by their social relationships.
Experimental validation across multiple public
datasets demonstrates that this approach significantly
outperforms existing mainstream models in both
trajectory prediction accuracy (average ADE
improvement of 7.0%) and social plausibility, with
particularly pronounced advantages in long-term
prediction scenarios. Ablation studies further confirm
that the three core components—dynamic
community detection, bidirectional neural time point
processes, and graph neural networks—each make
substantial contributions, collectively forming the
foundation of the method's efficacy. This research not
only provides a more precise modelling tool for
behavioural trajectory prediction but also offers new
analytical perspectives for understanding the
interactive mechanisms between group dynamics and
individual behaviour within social networks.

Looking ahead, several directions for future
expansion remain. Firstly, the current construction of

neural
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dynamic networks primarily relies on explicit
associations such as co-occurrence. Future work
could explore integrating multi-source heterogeneous
data, including semantic information and
communication records, to build more accurate
implicit relationship networks. Secondly, while the
method performs well in open environments, its
adaptability and generalisation capabilities in more
complex settings—such as indoor navigation and
multimodal transport—require further validation.
This could be addressed by incorporating
environmental topology prior knowledge or
cross-scenario transfer learning mechanisms. Thirdly,
real-time inference efficiency is critical for practical
deployment.  Future should  optimise
algorithmic complexity, for instance, through
dynamic sparse graph attention or model distillation
techniques, to meet the demands of large-scale
real-time applications. Moreover, trajectory data
contains highly sensitive personal information.
Embedding protective
differential privacy and federated learning during
model training and inference to achieve ‘usable but
not visible’ privacy-preserving computation is a
necessary prerequisite for technological
implementation. It is hoped that the approach
outlined in this work can be extended to broader
application domains, including crowd behaviour
prediction, urban planning, and public safety
management,  thereby  providing theoretical
foundations and technical tools for constructing
intelligent social environments.

work

mechanisms such as
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