
©The Author(s) 2023. Published by BONI FUTURE DIGITAL PUBLISHING CO.,LIMITED. This is an open access article under the CC BY
License(https://creativecommons.org/licenses/by/4.0/).

556

Received: 1 Oct. 2023 | Revised: 14 Oct. 2023 | Accepted: 02 Nov. 2023 | Published online: 24 Nov. 2023

RESEARCH ARTICLE
Contemporary Education and Teaching Research

2023, Vol. 4(11)556-561
DOI: 10.61360/BoniCETR232015151101

Adapting Jupyter for C++ Programming Education

: An Empirical Study on Lab Instruction Strategies

and Student Perspectives
Mengye Lyu*,1, Yuan Zhang1, Shaojun Liu1 & Lingling Chen1
1College of Health Science and Environmental Engineering, Shenzhen Technology University, China
Abstract: This paper explores the use of the Jupyter platform in teaching C++ programming at the higher
education level. It includes a comparative analysis between traditional integrated development environments and
online judge systems. The study discusses a teaching approach that leverages JupyterHub and Xeus-Cling to
create an interactive learning setting. This approach was pilot-tested during a C++ lab session at Shenzhen
Technology University, and student feedback was subsequently gathered and analyzed. A substantial number of
students found value in Jupyter's interactive capabilities and the seamless integration of code execution and
report writing. However, others experienced difficulties with the platform due to adaptation hurdles, code
compatibility issues, and the lack of functionality compared to traditional integrated development environments.
The paper further explores the potential of integrating Jupyter with the Visual Studio Code environment to
mitigate these limitations and amplify its benefits. The paper concludes by recommending ongoing research and
evaluation to refine and adapt this innovative teaching strategy.
Keywords: computer programming; higher education; lab; practice; Jupyter

1. Introduction
The rapidly evolving world of computer science

education continuously embraces a diverse range of
tools and platforms, aiming to improve the learning
and teaching experiences. One of the critical aspects
of this education is lab instruction, an area that has
seen significant strategic shifts over the years. This
paper focuses on the organization of lab instruction
for computer programming, with an emphasis on
C++ programming and the rising Jupyter platform.
Through this research, we aim to contribute to the
ongoing discourse on how the instructional methods
are changing in computer programming education.
We begin with a review of traditional strategies
involving integrated development environments and
online judge systems, examining their benefits and
limitations. We then delve into the possibilities

offered by the Jupyter platform, which has gained
considerable traction for its interactive nature. To
provide a comprehensive analysis, we also describe
an empirical study conducted with a class of
Intelligent Medical Engineering major at Shenzhen
Technology University. This class, during their final
C++ programming lab session, was exposed to the
Jupyter-based lab instruction. We capture their
experiences and feedback, further exploring the
potential of incorporating the Jupyter platform in
C++ programming lab sessions. In essence, this
paper serves as a comparison study, a feedback
repository, and a reflective discourse on the potential
transition from traditional to more interactive lab
teaching environments, while considering the
challenges and prospects. The ultimate goal is to
enrich the pedagogical approach in C++
programming education, making the learning processCorresponding Author:Mengye Lyu

College of Health Science and Environmental Engineering, Shenzhen
Technology University, China
Email: lvmengye@sztu.edu.cn

Contemporary Education and Teaching Research Vol. 4 Iss. 11 2023

557

more engaging, effective, and rewarding.

2. Review of Existing Lab Instruction Strategies in
Computer Programming Courses
2.1. Integrated development environments

Integrated Development Environments (IDEs)
have long been the cornerstone of programming
education. These comprehensive platforms integrate
several tools necessary for software development into
a single graphical user interface. This integration
allows students to write, compile, debug, and run
their code within a unified workspace, thereby
streamlining the learning process. For C and C++
programming, tools such as Visual Studio and Dev
C++ have been widely adopted. Visual Studio, a
product of Microsoft, is a commercial IDE that yet
has free community edition and supports multiple
languages but is particularly known for its features
tailored to C and C++. Dev C++, on the other hand,
is a lightweight IDE that is popular for its simplicity
and ease of use, particularly in educational settings
(Yevick, 2012). Other choices include Code::Blocks
(Soto & Figueroa, 2018), Eclipse (Allowatt &
Edwards, 2005) and QT creator (Woon & Bau,
2017).

These IDEs offer a range of features, including a
code editor for writing and formatting code, a
compiler for translating written code into a language
that can be executed by a computer, and a debugger
for identifying and correcting errors in the code.
They also provide build automation tools, which
automate common tasks like compiling and running
programs, thereby allowing students to focus more
on coding and less on the administrative aspects of
programming. However, despite their benefits, these
IDEs can sometimes present challenges, particularly
for beginners. The complexity and multitude of
features offered by these tools can be overwhelming,
and the need to install and configure the software on
individual machines can pose additional barriers to
entry. Furthermore, using an Integrated Development
Environment (IDE) for programming practice
presents challenges for the teachers in assessing the
accuracy of a student's code. Given the versatility of

solutions for a specific programming problem and
the subtlety of some bugs, error identification based
solely on code reading can be complex. A program
may generate correct outputs from a few test inputs
in the IDE, yet fail to function for other edge cases.
Consequently, the teachers may struggle to provide
timely feedback when relying solely on IDE in lab
sessions. This situation can result in students falling
into a passive learning mode due to a lack of prompt,
corrective feedback.
2.2. Online judge systems

In contrast to the traditional IDEs, online judge
(OJ) systems (Wasik et al., 2018), such as HustOJ
(Jiang & Xu, 2019), DMOJ
(https://github.com/DMOJ/online-judge), and
LeetCode (https://leetcode.com) have emerged as
popular tools in the modern landscape of
programming education. OJ systems were originally
used in programming competitions then quickly
adopted for computer programming lab sessions in
many colleges to provide more practice opportunities
for students (Zhang et al., 2023). These platforms
provide a collection of problems that students can
attempt to solve using various programming
languages, including C and C++. The solutions
submitted by students are automatically evaluated
against a set of predefined test cases, providing
instant feedback on the correctness and efficiency of
their code.

This approach to learning encourages self-paced,
problem-based learning. Students can choose
problems that align with their current learning
objectives, work on their solutions independently,
and receive immediate feedback on their work. This
instant feedback loop allows students to quickly
identify and learn from their mistakes, a process that
is crucial for skill development in programming.
Moreover, the competitive aspect of these platforms,
where students can compare their performance with
others, can serve as a powerful motivator. However,
while these systems excel at teaching
problem-solving skills and algorithmic thinking, they
may not provide comprehensive coverage of all
programming concepts. For instance, students may

Contemporary Education and Teaching Research Vol. 4 Iss. 11 2023

558

focus on passing the OJ questions as the only
objectives while paying less attention to writing high
quality code that is human readable and easy to
maintain. Additionally, OJ systems mainly focus on
automated evaluation of solutions, but often lack
comprehensive code editors and auto-completion
features that new learners find helpful. As a result,
OJ systems are frequently used alongside IDEs for
lab sessions, which adds another level of complexity
for beginners. Another common downside of both
IDE-based and OJ-based lab teaching strategies is the
separation of coding and report writing processes,
which makes it cumbersome to document the coding
process and insights and increases the homework
burden of the students.
2.3. Jupyter platform

The Jupyter platform (https://jupyter.org), which
mainly includes Jupyter Notebook (1st generation),
JupyterLab (2nd generation), and JupyterHub
(multi-user version), represents a newer approach to
programming education. This platform allows for the
creation and sharing of documents that contain live
code, equations, visualizations, and narrative text.
This combination of code and rich text elements
allows for a more interactive and exploratory style of
learning (Reades, 2020). For C and C++
programming, tools like Cling
(https://github.com/root-project/cling) and
Xeus-Cling(https://github.com/jupyter-xeus/xeus-clin
g) can be used to provide an interactive programming
environment within the Jupyter platform. Cling is an
interpreter for C and C++, while Xeus-Cling is a
Jupyter kernel for C++ based on Cling and Jupyter
protocol Xeus. These tools allow students to write
and execute C and C++ code directly within a
Jupyter notebook using any web browsers, providing
a level of interactivity and immediacy that is not
typically available in traditional C and C++
development environments (Diehl & Brandt, 2023).

However, while the Jupyter platform has been
widely adopted for languages like Python and R, its
support for C and C++ is not as mature. The use of
Jupyter notebooks for C and C++ programming
education is still relatively new and less studied, and

there may be challenges and limitations that have yet
to be fully explored. In this study, we adopt Jupyter
platform for one lab session of the C++ programming
course with one class in our college, and analyze the
results to reveal the benefits and limitations.

Figure 1
The user interface of the experimental C++
programming environment based on JupyterHub
and Xeus-Cling. It supports both C++ coding and
markdown-based report writing.

3. Research Methodology
To investigate the potential of Jupyter-based

C++ lab teaching, we created a Jupyter C++
environment by installing the latest version of
JupyterHub and Xeus-Cling on a cloud server. The
user interface is shown in Figure 1. This approach
was tested in a class of 50 students in Intelligent
Medical Engineering major at Shenzhen Technology
University during their final C++ programming lab
session. In previous sessions, the students had used
Visual Studio for programming exercises, submitted
solutions to a HustOJ system, and written separate,
traditional format lab reports. In this particular lab
session, the students were instructed to interactively
program in C++ using Jupyter, and to write their lab
reports directly in Jupyter using markdown after
executing the code. The Pyppeteer package
(https://pypi.org/project/pyppeteer) was installed on
the cloud server, enabling students to export their lab
reports as PDFs, which would then be used by
teachers for grading purposes. The students were
allowed to choose freely between the traditional lab

Contemporary Education and Teaching Research Vol. 4 Iss. 11 2023

559

report format and the new Jupyter format for their
submissions. Those who opted for the Jupyter format
were asked to provide feedback on their experiences.

The feedback collected from the students was
subsequently analyzed. Comments were categorized
as either positive, neutral, or negative. The total
number of students who selected each report format
was determined, as was the number of students who
provided feedback within each category.

4. Results
In terms of report format preference, while a

substantial number of students (40%) still opted for
the traditional method, the majority of the students
(60%) chose the Jupyter Lab format. Specifically, out
of a total of 50 students, 30 opted to write their lab
reports using Jupyter notebooks, while 20 students
chose the traditional format. Regarding the feedback
from the 30 students, 6 students expressed positive
feelings and 10 students expressed neutral feelings.
The advantages they found are summarized as
follows.

(1) Interactive and visual learning experience:
The students appreciated the interactive nature of
Jupyter and found it convenient to run code blocks
step by step and view results immediately.

(2) Ease of report writing: Some students found
the ability to write code and reports in the same
notebook helpful. It saved them the hassle of copying
and pasting code from other platforms to the report,
thus making the process more efficient.

(3) Less traditional report writing: The format of
Jupyter was praised for reducing the workload of
traditional report writing, as some elements (like
experiment contents) were provided in the template.

On the other hand, 14 students shared negative
feedback. The disadvantages and challenges they
found are summarized as follows.

(1) Adaptation challenges: A large number of
students found it difficult to adapt to the new
environment, especially in the beginning. This
included issues with syntax, error handling, and
unfamiliarity with the interface.

(2) Code compatibility issues: A significant

drawback raised was that some code that could run
on other platforms like VS and OJ failed to execute
in Jupyter. This caused confusion and was a source of
frustration.

(3) Limited functionality compared with IDEs:
Some students criticized Jupyter for lacking some
features they were used to in their previous
environments, like keyword or member variable
autocomplete.

5. Discussion
The student feedback provided valuable insights

into the benefits and challenges of the Jupyter-based
lab teaching approach. It was seen as beneficial in
terms of providing an interactive programming
environment and saving time on lab report writing.
However, some students faced difficulties with
running code as they are used to in IDEs, and some
believed it was more time-consuming than the
traditional way.

To partially address the negative feedback, there
is an enticing potential in merging the capabilities of
the Visual Studio (VS) Code environment with the
Jupyter platform to further enrich the learning and
teaching experiences in C++ programming. VS Code
has strong capabilities for code editing, debugging,
and a host of additional features that students are
already familiar with, such as keyword or member
variable autocomplete. On the other hand, Jupyter
provides an interactive platform that allows for
efficient code-experimentation and report writing in
one place. The integration of these two platforms
could take advantage of the best of both worlds and
is already made possible with the VS code Jupyter
extension(https://github.com/Microsoft/vscode-jupyt
er). A collaborative workspace that combines VS
Code's comprehensive development functionalities
with Jupyter's interactive and visual learning features
could mitigate many of the issues students reported,
while also maintaining and enhancing the advantages.
This integration could provide students with a more
comprehensive and efficient platform, thus making
their learning process smoother and more productive.

The difference between standard C++ grammar

Contemporary Education and Teaching Research Vol. 4 Iss. 11 2023

560

and cling/Xeus grammar can indeed pose challenges
for new learners, who therefore reported code
compatibility issues. Standard C++ grammar is the
established syntax and semantic rules that guide the
coding in C++. Most educational resources, online
tutorials, and textbooks are based on this standard
grammar, and most compilers are designed to
interpret it. On the other hand, Cling, the underlying
interpreter of C++ kernel in Jupyter, allows for a
more interactive C++ experience. While it tries to be
consistent with standard C++ as much as possible,
there are still differences due to the interactive nature
of the interpreter.

For instance, in Cling, code can be written in a
more incremental and exploratory manner, running
snippets of code in Jupyter cells. This is in contrast to
the more structured and holistic approach often
required by standard C++, where the entire code
needs to be compiled before it can be run. We have
noticed some practical differences, including the
handling of function declarations and operator
overloading, where the current version of Cling only
allows one function declaration per Jupyter cell and
operator overloading cannot be defined outside a
class as a non-member function. These differences
can create confusion for new learners, especially
those who have already gained familiarity with
standard C++ grammar. The cognitive dissonance of
working with two different grammars could
potentially slow down the learning curve and
introduce more room for errors and
misunderstandings. As such, the transition between
the two grammars, or integrating them into a single
learning experience, should be approached with
consideration to mitigate these challenges.

6. Conclusion
In summary, while Jupyter provided a new,

efficient, and more interactive way of learning C++
programming, it also presented several challenges,
mainly related to the adaptation of the new platform,
code compatibility, and functionality. These issues
might have caused a certain level of frustration
among the students, suggesting there is room for

improvement and adaptation to optimize the use of
Jupyter for C++ programming labs. Continuous
evaluation and feedback collection are necessary to
enhance and adapt this new teaching method.

Conflict of Interest
The authors declare that they have no conflicts

of interest to this work.

Acknowledgement
This research was funded by:

The Teaching Reform Research Project of
Shenzhen Technology University (No. 20231026
and No. 20231023).

References
Allowatt, A., & Edwards, S. H. (2005). IDE Support
for test-driven development and automated grading
in both Java and C++. Proceedings of the 2005
OOPSLA Workshop on Eclipse Technology
EXchange, 100-104.

Diehl, P., & Brandt, S. R. (2023). Interactive C++
code development using C++Explorer and GitHub
classroom for educational purposes. Concurrency
and Computation: Practice and Experience, 35(18),
e6893.

Jiang, Z., & Xu, X. (2019). Design and
Implementation of Fill-in-the-blank Questions
based on Open Source Online Judge System. In 3rd
International Conference on Computer Engineering,
Information Science & Application Technology
(ICCIA 2019) (pp. 66-70). Atlantis Press.

Reades, J. (2020). Teaching on jupyter. Region, 7(1),
21-34.

Soto, M. S., & Figueroa, I. (2018). Heuristic
Evaluation of Code::Blocks as a Tool for First Year
Programming Courses. 2018 37th International
Conference of the Chilean Computer Science
Society (SCCC), 1-8.

Wasik, S., Antczak, M., Badura, J., Laskowski, A., &
Sternal, T. (2018). A Survey on Online Judge
Systems and Their Applications. ACM Computing
Surveys, 51(1), 3:1-3:34.

Woon, H.-C., & Bau, Y.-T. (2017). Difficulties in
Learning C++ and GUI Programming with Qt

Contemporary Education and Teaching Research Vol. 4 Iss. 11 2023

561

Platform: View of Students. Proceedings of the 1st
International Conference on E-Commerce,
E-Business and E-Government, 15-19.

Yevick, D. (2012). A Short Course in Computational
Science and Engineering. In A Short Course in
Computational Science and Engineering.

Zhang, Y., Li, Z., Du, B., Wu, Y., & Jiang, H. (2023).
Data Analysis of Online Judge System-Based
Teaching Model. In W. Hong & Y. Weng (Eds.)
Computer Science and Education (pp. 531–543).
Springer Nature.

How to Cite: Lyu, M., Zhang, Y., Liu, S. & Chen, L. (2023).
Adapting Jupyter for C++ Programming Education: An Empirical
Study on Lab Instruction Strategies and Student Perspectives.
Contemporary Education and Teaching Research, 04(11),556-561.
https://doi.org/10.61360/BoniCETR232015151101

	2.1.Integrated development environments
	2.2.Online judge systems

